CS 3830 Day 10 Introduction 1-1. Announcements r Quiz #2 this Friday r Program 2 posted yesterday 2: Application Layer 2.

Slides:



Advertisements
Similar presentations
DNS – Domain Name system Converting domain names to IP addresses since 1983.
Advertisements

Domain Name System (or Service) (DNS) Computer Networks Computer Networks Term B10.
1 EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Spring 2012 Spring 2012.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
2: Application Layer1 FTP, SMTP and DNS. 2: Application Layer2 FTP: separate control, data connections r FTP client contacts FTP server at port 21, specifying.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts, routers: –IP address (32 bit) - used for addressing datagrams –“name”, e.g., gaia.cs.umass.edu.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Application Layer session 1 TELE3118: Network Technologies Week 12: DNS Some slides have been taken from: r Computer Networking: A Top Down Approach.
CPSC 441: DNS1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes derived.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Name Resolution and DNS. Domain names and IP addresses r People prefer to use easy-to-remember names instead of IP addresses r Domain names are alphanumeric.
Chapter 2 Application Layer
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Introduction 1 Lecture 8 Application Layer (DNS, p2p) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
CS 4396 Computer Networks Lab
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts: – IP address (32 bit) - used for addressing datagrams – “name”, e.g.,
DNS & P2P A PPLICATIONS د. عـــادل يوسف أبو القاسم.
Domain Name System (DNS)
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 10 Omar Meqdadi Department of Computer Science and Software Engineering University.
DNS. 2 DNS: Domain Name System DNS services Hostname to IP address translation Host aliasing – Canonical and alias names Mail server aliasing Load distribution.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
1 Lecture05: Application layer r Principles of network applications r DNS r P2P and DHT.
2: Application Layer 1 1DT066 Distributed Information Systems Chapter 2 Application Layer.
2: Application Layer1 Some network apps r r Web r Instant messaging r Remote login r P2P file sharing r Multi-user network games r Streaming stored.
CS 471/571 Domain Name Server Slides from Kurose and Ross.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 2: Application.
DNS: Domain Name System
Review: –Which protocol is used to move messages around in the Internet? –Describe how a message is moved from the sender’s UA to the receiver’s.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
DNS: Domain Name System People: many identifiers: – SSN, name, Passport # Internet hosts, routers: – IP address (32 bit) - used for addressing datagrams.
25.1 Chapter 25 Domain Name System Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
DNS. 2 DNS: Domain Name System DNS services Hostname to IP address translation Host aliasing – Canonical and alias names Mail server aliasing Load distribution.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications  app architectures  app requirements r 2.2 Web and HTTP r.
2: Application Layer1 DNS: Domain Name System People have many identifiers: SSN, name, passport number Internet hosts, routers have identifiers, too: IP.
CPSC 441: DNS 1. DNS: Domain Name System Internet hosts: m IP address (32 bit) - used for addressing datagrams m “name”, e.g., - used by.
Lecture 5: Web Continued 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
1 EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer Networking book.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
1 Kyung Hee University Chapter 19 DNS (Domain Name System)
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
No Class on Friday There will be NO class on: FRIDAY 1/29/15 1.
1. Internet hosts:  IP address (32 bit) - used for addressing datagrams  “name”, e.g., ww.yahoo.com - used by humans DNS: provides translation between.
Application Layer, 2.5 DNS 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
Important r On Friday, could you ask students to please me their groups (one per group) for Project 2 so we can assign IP addresses. I’ll send.
CSEN 404 Application Layer II Amr El Mougy Lamia Al Badrawy.
Spring 2006 CPE : Application Layer_DNS 1 Special Topics in Computer Engineering Application layer: Domain Name System Some of these Slides are.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
1 Prof. Leonardo Mostarda University of Camerino Naming Prof. Leonardo Mostarda-- Camerino,
2: Application Layer 1 Some network apps r r Web r Instant messaging r Remote login r P2P file sharing r Multi-user network games r Streaming stored.
Internet Applications
Chapter 17 DNS (Domain Name System)
Introduction to Networks
Chapter 19 DNS (Domain Name System)
Session 6 INST 346 Technologies, Infrastructure and Architecture
Chapter 9: Domain Name Servers
Introduction to Communication Networks
Chapter 2 Application Layer
Chapter 7: Application layer
Cookies, Web Cache & DNS Dr. Adil Yousif.
Chapter 19 DNS (Domain Name System)
FTP, SMTP and DNS 2: Application Layer.
Lecture 3 – Chapter 2 CIS 5617, Fall 2019 Anduo Wang
Presentation transcript:

CS 3830 Day 10 Introduction 1-1

Announcements r Quiz #2 this Friday r Program 2 posted yesterday 2: Application Layer 2

3 DNS Why not centralize DNS? r single point of failure r traffic volume r distant centralized database r maintenance doesn’t scale! DNS services r hostname to IP address translation r host aliasing  Canonical, alias names r mail server aliasing r load distribution

2: Application Layer 4 Root DNS Servers com DNS servers org DNS serversedu DNS servers poly.edu DNS servers umass.edu DNS servers yahoo.com DNS servers amazon.com DNS servers pbs.org DNS servers Distributed, Hierarchical Database Client wants IP for 1 st approx: r client queries a root server to find “.com” DNS server r client queries “.com” DNS server to get amazon.com DNS server r client queries amazon.com DNS server to get IP address for

2: Application Layer 5 DNS: Root name servers r contacted by local name server that can not resolve name r root name server:  contacts authoritative name server if name mapping not known  gets mapping (recursive)  returns mapping to local name server (recursive) 13 root name servers worldwide b USC-ISI Marina del Rey, CA l ICANN Los Angeles, CA e NASA Mt View, CA f Internet Software C. Palo Alto, CA (and 36 other locations) i Autonomica, Stockholm (plus 28 other locations) k RIPE London (also 16 other locations) m WIDE Tokyo (also Seoul, Paris, SF) a Verisign, Dulles, VA c Cogent, Herndon, VA (also LA) d U Maryland College Park, MD g US DoD Vienna, VA h ARL Aberdeen, MD j Verisign, ( 21 locations)

2: Application Layer 6 TLD and Authoritative Servers r Top-level domain (TLD) servers:  Responsible for com, org, net, edu, etc, and all top- level country domains uk, fr, ca, jp.  Network Solutions maintains servers for com TLD  Educause for edu TLD r Authoritative DNS servers:  organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e.g., Web, mail).  can be maintained by organization or service provider

2: Application Layer 7 Local Name Server r does not strictly belong to DNS hierarchy r each ISP (residential ISP, company, university) has one.  Also called “default name server”  Primary, secondary  ipconfig /showall r when host makes DNS query, query is sent to its local DNS server  acts as proxy, forwards query into hierarchy

2: Application Layer 8 requesting host io.uwplatt.edu cs.iastate.edu root DNS server local DNS server localdns1.uwplatt.edu authoritative DNS server dns.iastate.edu 7 8 TLD DNS server DNS name resolution example r Host at io.uwplatt.edu wants IP address for cs.iastate.edu iterated query: r contacted server replies with name of server to contact r “I don’t know this name, but ask this server”

2: Application Layer 9 requesting host io.uwplatt.edu cs.iastate.edu root DNS server local DNS server localdns1.uwplatt.edu authoritative DNS server dns.iastate.edu 7 8 TLD DNS server 3 recursive query: r puts burden of name resolution on contacted name server r heavy load? DNS name resolution example

2: Application Layer 10 Chapter 2: Application layer r 2.1 Principles of network applications  app architectures  app requirements r 2.2 Web and HTTP r 2.4 Electronic Mail  SMTP, POP3, IMAP r 2.5 DNS r 2.6 P2P applications r 2.7 Socket programming with TCP r 2.8 Socket programming with UDP

2: Application Layer 11 Pure P2P architecture r no always-on server r arbitrary end systems directly communicate r peers are intermittently connected and change IP addresses r Two main topics:  File distribution  How to search for information peer-peer

2: Application Layer 12 File Distribution: Server-Client vs P2P Question : How much time to distribute file from one server to N peers? usus u2u2 d1d1 d2d2 u1u1 uNuN dNdN Server Network (with abundant bandwidth) File, size F u s : server upload bandwidth u i : peer i upload bandwidth d i : peer i download bandwidth

2: Application Layer 13 File distribution time: server-client usus u2u2 d1d1 d2d2 u1u1 uNuN dNdN Server Network (with abundant bandwidth) F r server sequentially sends N copies:  NF/u s time r client i takes F/d i time to download increases linearly in N (for large N) = d cs = max { NF/u s, F/min(d i ) } i Time to distribute F to N clients using client/server approach

2: Application Layer 14 File distribution time: P2P usus u2u2 d1d1 d2d2 u1u1 uNuN dNdN Server Network (with abundant bandwidth) F r server must send one copy: F/u s time r client i takes F/d i time to download r NF bits must be downloaded (aggregate) r fastest possible upload rate: u s +  u i d P2P = max { F/u s, F/min(d i ), NF/(u s +  u i ) } i

2: Application Layer 15 Server-client vs. P2P: example Client upload rate = u, F/u = 1 hour, u s = 10u, d min ≥ u s