Friday meeting Nawin Juntong Halloween-2008. σ z = 1 mmσ z = 0.7 mmσ z = 0.3 mm ECHO 2D ABCI Δ (%) ECHO 2D ABCIΔ (%) ECHO 2D ABCI Δ (%) TESLA k L [V/pC]9.8910.041.5211.5611.822.2517.7218.464.18.

Slides:



Advertisements
Similar presentations
Effect of RFQ Modulations on Frequency and Field Flatness
Advertisements

Ursula van Rienen, Universität Rostock, FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics Scattering Parameter Calculation for.
Update of RTML, Status of FNAL L-band and CLIC X-band BPM, Split SC Quadrupole Nikolay Solyak Fermilab (On behalf of RTML team) LCWS2010 / ILC 10, March.
Institut Theorie Elektromagnetischer Felder Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8,
Issues in ILC Main Linac and Bunch Compressor from Beam dynamics N. Solyak, A. Latina, K.Kubo.
Impedance of SPS travelling wave cavities (200 MHz) A. Grudiev, E. Métral, B. Salvant, E. Shaposhnikova, B. Spataro Acknowledgments: Erk Jensen, Eric Montesinos,
Theoretical and Experimental studies on energy transfer in Couplers for Superconducting RF Cavities Nawin Juntong 20-December-2007.
ERHIC Main Linac Design E. Pozdeyev + eRHIC team BNL.
3.9 GHz Deflecting Mode Cavity Timothy W. Koeth July 12, 2005.
F Specifications for the dark current kicker for the NML test facility at Fermilab S. Nagaitsev, M. Church, P. Piot, C.Y. Tan, J. Steimel Fermilab May.
1 Tracking code development for FFAGs S. Machida ASTeC/RAL 21 October, ffag/machida_ ppt & pdf.
Investigation of Wake Fields in Optimized SRF Cavities for the ILC The Cockcroft Institute of Accelerator Science and Technology, Daresbury WA4 4AD, UK.
Photocathode 1.5 (1, 3.5) cell superconducting RF gun with electric and magnetic RF focusing Transversal normalized rms emittance (no thermal emittance)
LOLA setup simulated LOLA measurement*: no transverse beam dimensions imaging: entrance-LOLA to OTR simulated LOLA measurement*: gaussian transverse shape.
SRF CAVITY GEOMETRY OPTIMIZATION FOR THE ILC WITH MINIMIZED SURFACE E.M. FIELDS AND SUPERIOR BANDWIDTH The Cockcroft Institute of Accelerator Science and.
KEK R&D for LHC Plan of 800MHz Cavity Calculation of 400MHz Cavity 16 th September 2009, LHC-CC09 at CERN K.Nakanishi.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Simulation of trapped modes in LHC collimator A.Grudiev.
AAC’08, Santa Cruz, CA, July 27- August 2, 2008 Euclid Techlabs LLC & FNAL SC TW ACCELERATING STRUCTURE FOR ILC SC Traveling Wave Accelerating Structure.
Beam breakup and emittance growth in CLIC drive beam TW buncher Hamed Shaker School of Particles and Accelerators, IPM.
Damping Ring ImpedanceK. Bane 04/05/2007 ILC DR Impedance Group At SLAC a group has been meeting bi-weekly for ½ year to study ILC DR broad band impedance.
Bunch Separation with RF Deflectors D. Rubin,R.Helms Cornell University.
Impedance Budget Database Olga Zagorodnova BD meeting, DESY.
Coupler Short-Range Wakefield Kicks Karl Bane and Igor Zagorodnov Wake Fest 07, 11 December 2007 Thanks to M. Dohlus; and to Z. Li, and other participants.
Long Range Wake Potential of BPM in Undulator Section Igor Zagorodnov and Martin Dohlus Beam Dynamics Group Meeting
P I T Z Photo Injector Test Facility Zeuthen Design consideration of the RF deflector to optimize the photo injector at PITZ S.Korepanov.
Isabell-A. Melzer-Pellmann LET Beam Dynamics Workshop, Lumi scans with wakefields in Merlin Lumi scans with wakefields in Merlin Isabell-A.
BEAMLINE HOM ABSORBER O. Nezhevenko, S. Nagaitsev, N. Solyak, V. Yakovlev Fermi National Laboratory December 11, 2007 Wake Fest 07 - ILC wakefield workshop.
Emittance preservation in the RTML of ILC and CLIC Andrea Latina (CERN) Nikolay Solyak (FNAL) LCWS University of Texas at Arlington - Oct
Collimator Wakefields Igor Zagorodnov BDGM, DESY
TESLA DAMPING RING RF DEFLECTORS DESIGN F.Marcellini & D. Alesini.
ILC 07 May 30-June 3, 2007 N.Solyak 1 MULTIPACTORING SIMULATIONS IN CAVITIES AND HOM COUPLERS Nikolay Solyak, Ivan Gonin, Jiajian Li Fermilab.
HOMs in the TESLA 9-cell cavity HOMs in the XFEL and ILC Rainer Wanzenberg SPL HOM workshop CERN, June 25 – 26, 2009.
Dr Ian Shinton Researcher HEP group Manchester, Cockcroft Institute Daresbury.
Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, Darmstadt, Germany - URL: Technische.
Geometric Impedance of LHC Collimators O. Frasciello, S. Tomassini, M. Zobov LNF-INFN Frascati, Italy With contributions and help of N.Mounet (CERN), A.Grudiev.
Work progress Nawin Juntong Overall - Searching for the theory of RF coupler kick calculation. - Detailed of Dr. G. Burt method and others.
Wake-fields simulations and Test Structure
The Cockcroft Institute and The University of Manchester
TDR guideline discussion on Cavity Integration
HOM-BPM study in STF for cavity miss-alignment detection
Coupler RF kick simulations.
Manchester University Christmas talk 04/01/2010
Finemet cavity impedance studies
WP10.5: HOM Distribution Task 2 – Presentation 2.
Numerical Studies of Resistive Wall Effects
HOM power in FCC-ee cavities
Wakefield simulations for ILC cavity
Status and details of coupler kick and wake simulations
FPC Coupler RF Dipole Kick
Coupler kick and wake simulations upgrade
800 MHz 2-Cavity module simulations
Bunch Separation with RF Deflectors
Few Slides from RF Deflector Developments and Applications at SLAC
Transition Wakes in the 3.9 GHz Cryomodule
Optimization of Elliptical SRF Cavities where
Multipacting Simulations of TTF-III Coupler Components*#
Igor Zagorodnov and Martin Dohlus
Overview Multi Bunch Beam Dynamics at XFEL
¼ meshed models for Omega3P calculations
SRF Cavity Designs for the International Linear Collider*
Simulation of trapped modes in LHC collimator
WP3: HOM wakefields simulations,
CEPC Main Ring Cavity Design with HOM Couplers
Beamline Absorber Study Using T3P
Collimator Wakefields
Accelerator Physics Particle Acceleration
Evgenij Kot XFEL beam dynamics meeting,
Short-Range Wakes in Elliptical Pipe Geometry
Igor Zagorodnov and Martin Dohlus
Presentation transcript:

Friday meeting Nawin Juntong Halloween-2008

σ z = 1 mmσ z = 0.7 mmσ z = 0.3 mm ECHO 2D ABCI Δ (%) ECHO 2D ABCIΔ (%) ECHO 2D ABCI Δ (%) TESLA k L [V/pC] k T [V/pC/m] ICHIRO k L [V/pC] k T [V/pC/m] RE- ENTRANT k L [V/pC] k T [V/pC/m] ECHO 2D and ABCI comparison TESLA – CDR (σ z = 0.7mm) Longitudinal loss factor (k L )10.2 V/pC Transverse loss factor (k T )15.1 V/pC/m TTF – DR (σ z = 1mm) HOM loss factor (k L )9.24 V/pC Values from papers for TESLA structure ICHIRO RE-ENTRANT TESLA ECHO 2D mesh= σ z /5, ABCI mesh= σ z /10,

TTF-Style Coupler Mesh (cells) G.BurtG.Burt modifiedG.HoffstaetterG.Hoffstaetter use scale B i i i i i i i i i i i i i Infinite i i i 9 cells run Mesh (cells) G.BurtG.Burt modifiedG.HoffstaetterG.Hoffstaetter use scale B i i i i i i i i i i i i i i i i Infinite i i i 4.5 cells run Non identical cells

RF Coupler kick comparison kxUpstreamDownstreamOnly Power CP My results i I. Zagorodnov i i-- V.Yakovlev i i i M. Dohlus i-23+52i i 2 N. Solyak i i-- UpstreamDownstream 1 ILC Workshop, DESY, May Wakefest07,RF coupler kick. 3 MOPP013, EPAC08. 4 MOPP042, EPAC08.

k x is constant when vary the phase Φ k

HOM included simulation -Extract HOM geometry from Slava’s sat file in HFSS into new separated sat file for each part. -Import new sat files into MWS. -Tested simulation run with 20 lines/wavelength meshing in eigenmode solution. TDR (Z. NAWIN (MWS drawing by N. Juntong)

NEXT Obtain the rf-kick results from the simulation on fundamental mode and HOM couplers with MWS. Attend CAS2008 at Frascati, Italy on 2-14 November 2008.

BACK UP Slides

1.Combine 2 SW fields to get TW fields 2.Integrate Lorentz force to get the change of momentum 3.Transverse kick factor is a ratio of the change of transverse momentum to the change of longitudinal momentum How to calculate kick factor (Dr. G.Burt method) PEC bc. PMC bc.

1.Combine 2 SW fields to get TW fields 2.Integrate Lorentz force to get the change of momentum 3.Transverse kick factor is a ratio of the change of transverse momentum to the change of longitudinal momentum How to calculate kick factor (B. Buckley and G.H. Hoffstaetter method) MWS from fields theis ˆ A PRST-AB 10,111002(2007),Cornell-ERL-06-02

TESLA-TTF beam pipe cavity TESLA TESLA – CDR (σ z = 0.7mm) Longitudinal loss factor (k L )10.2 V/pC Transverse loss factor (k T )15.1 V/pC/m TTF – DR (σ z = 1mm) HOM loss factor (k L )9.24 V/pC Parameters σ z = 1 mmσ z = 0.7 mmσ z = 0.3 mm ECHO 2DABCIECHO 2DABCIECHO 2DABCI Longitudinal loss factor (k L ) [V/pC] Transverse loss factor (k T ) [V/pC/m]