InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*,

Slides:



Advertisements
Similar presentations
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
Advertisements

The state-of-art based GaAs HBT
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Device Research Conference 2011
High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell.
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan, D. Scott, T. Mathew, Y. Wei, M. Dahlstrom, S. Lee, M. Rodwell. Department.
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
High speed InP-based heterojunction bipolar transistors Mark Rodwell University of California, Santa Barbara ,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected.
1 LW 6 Week 6 February 26, 2015 UCONN ECE 4211 F. Jain Review of BJT parameters and Circuit Model HBT BJT Design February 26, 2015 LW5-2 PowerPoint two.
ENE 311 Lecture 10.
Scaling of High Frequency III-V Transistors , fax Short Course, 2009 Conference on InP and Related Materials,
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes , fax 2003.
1999 IEEE Symposium on Indium Phosphide & Related Materials
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
Frequency Limits of Bipolar Integrated Circuits , fax Mark Rodwell University of California, Santa Barbara.
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
Indium Phosphide Bipolar Integrated Circuits: 40 GHz and beyond Mark Rodwell University of California, Santa Barbara ,
THz Transistors, sub-mm-wave ICs, mm-wave Systems , fax 20th Annual Workshop on Interconnections within High.
III-V HBT device physics: what to include in future compact models , fax Mark Rodwell University of California,
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
University of California, Santa Barbara
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
IEEE Bipolar/BiCMOS Circuits and Technology Meeting Zach Griffith, Mattias Dahlström, and Mark J.W. Rodwell Department of Electrical and Computer Engineering.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
On the Feasibility of Few-THz Bipolar Transistors , fax *Now at University of Texas, Austin Invited Paper,
Indium Phosphide and Related Materials
Submicron Transferred-Substrate Heterojunction Bipolar Transistors M Rodwell, Y Betser,Q Lee, D Mensa, J Guthrie, S Jaganathan, T Mathew, P Krishnan, S.
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Introduction to GaAs HBT and current technologies
20th IPRM, MAY 2008, Versallies-France
Lower Limits To Specific Contact Resistivity
High Transconductance Surface Channel In0. 53Ga0
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Presentation transcript:

InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*, Johann C. Rode, Vibhor Jain 2, Han-Wei Chiang, Ashish Baraskar 3, William J. Mitchell, Brian J. Thibeault, Mark J. W. Rodwell Dept. of ECE, University of California, Santa Barbara, CA 93106, USA (Now with 1 Agilent Technologies, Inc., CA, 2 IBM Corporation, VT, 3 GlobalFoundries, NY) Miguel Urteaga Teledyne Scientific & Imaging, Thousand Oaks, CA Dmitri Loubychev, Andrew Snyder, Ying Wu, Joel M. Fastenau, Amy W. K. Liu IQE Inc., Bethlehem, PA (707) International Symposium on Compound Semiconductors 2012

Outline 2 Motivation HBT Design & Scaling Fabrication Process & Challenge Electrical Measurements Conclusion

High gain at microwave frequencies: Precision analog design, high resolution ADCs, DACs Digital logic for optical fiber circuits THz amplifiers for imaging, communications THz imaging systems Tb/s optical fiber links Why THz Transistors? 3

Emitter: n ++ InGaAs cap n InP Base: p ++ InGaAs Doping grade Drift collector: n - InGaAs/InAlAs grade n - InP Sub-collector: n ++ InGaAs cap n ++ InP Collector CP Emitter BP Base z X X’ XX’: z Semi-insulating InP substrate C E B Type-I InP DHBTs at UCSB 4

Surface prep & doping Lateral scaling Epitaxial scaling ParameterChange collector depletion layer thicknessdecrease 2:1 base thicknessdecrease 1.41:1 emitter junction widthdecrease 4:1 collector junction widthdecrease 4:1 emitter contact resistivitydecrease 4:1 base contact resistivitydecrease 4:1 current densityincrease 4:1 Keep lengths the same, reduce widths 4:1 for thermal considerations To double bandwidth of a mesa DHBT: Keep constant all resistances and currents Reduce 2:1 all capacitances and transport delays HBT Scaling Laws 5

T(nm)MaterialDoping (cm -3 )Description 10In 0.53 Ga 0.47 As 8  : Si Emitter cap 15InP 5  : Si Emitter 15InP 2  : Si Emitter 25InGaAs  : C Base 9.5In 0.53 Ga 0.47 As 1  : Si Setback 12InGaAs / InAlAs 1  : Si B-C Grade 3InP 5  : Si Pulse doping 45.5InP 1  : Si Collector 7.5InP 1  : Si Sub Collector 5In 0.53 Ga 0.47 As 4  : Si Sub Collector 300InP 1  : Si Sub Collector 3.5In 0.53 Ga 0.47 As UndopedEtch stop SubstrateSI : InP V be = 1.0V, V cb = 0.5V, J e = 0, 27 mA/  m 2 Thin (70 nm) collector for balanced f τ /f max High emitter/base doping for low R ex /R bb Epitaxial Design 6

Sub-200 nm Emitter Anatomy 7 TiW W 100 nm Mo High-stress emitters fall off during subsequent lift-offs TiW W Single sputtered metal has non-vertical etch profile Hybrid sputtered metal stack for low-stress, vertical profile W/TiW interfacial discontinuity enables base contact lift-off Interfacial Mo blanket-evaporated for low ρ c SiN x SiNx sidewalls protect emitter contact, prevent emitter-base shorts Semiconductor wet etch undercuts emitter contact Very thin emitter epitaxial layer for minimal undercut

Positive i-line lithography Negative e-beam lithography E-beam lithography needed to define < 150 nm emitters and for < 50 nm emitter-base contact misalignment Negative i-line lithography Positive e-beam lithography Lithographic Scaling and Alignment 8 Emitter Base Mesa Base Contact

W eb = 155 nm W bc = 140 nm W bc = 150 nm T b + T c = 95 nm TiW W Pt/Ti/Pd/Au SiNx sidewall

Measurement 10 RF measurements conducted using Agilent E8361A PNA from 1-67 GHz DC bias and measurements made with Agilent 4155 SPA Off-wafer LRRM calibration, lumped-element pad stripping used to de-embed device S-Parameters Isolated pad structures used to provide clean RF measurements

β = 14 for 150 nm junction VB ceo = 2.44 J e = 15 kA/cm 2 R ex ≈ 2 Ω·µm 2 (RF extraction) Collector ρ sheet = 14 Ω/□, ρ c = 12 Ω·µm 2 DC Data 11

Peak RF performance at >40 mW/μm 2 Kirk limit not reached RF Data 12

Lowest ρ ex to date due to Mo contact, highly doped epi C cb lower than 100 nm collector epi designs due to E-beam litho ρ ex = 2 Ω·μm 2 C cb = 3.0 fF A jc = 1.86 μm 2 ~ 450 nm x 4 μm I c = 12.4 mA V ce = 1.5 V (0.2 S)V be exp -jω(0.23 ps) 13 Equivalent Circuit Model

230 fs 15 fs45 fs τ ec dominated by transit delays, high ideality factor reduces f τ ~ 10% E B 2.5 nm of Pt diffuses ~ 8 nm Expected base ρ c = 4 Ω·μm 2 and R sh = 800 Ω/□ yields f max > 1.0 THz for same f τ Epitaxial design, process damage explain high η b, R bb R sh increased by base contacts reacting with 5 nm (20 %) of base Performance Analysis 14

Conclusion 15 E-beam lithography used to define narrow emitter, narrowest base mesa reported to date Narrow mesa, low emitter ρ c enable 33% increase in f max from previous UCSB results with 70 nm collector thickness Epitaxial thinning increased f τ by 10% from 100 nm UCSB designs 1 THz bandwidth possible with improved base contact process This work was supported by the DARPA CMO Contract No. HR C Portions of this work were done in the UCSB nanofabrication facility, part of the NSF-funded NNIN network, and the MRL, supported by the MRSEC Program of the NSF under award No. MR

Questions?

Extra Slides

Bipolar Scaling Laws W gap

Ti 0.1 W 0.9 SiO x Cr n InGaAs, InP EBL PR Cl 2 /O 2 ICP etch p InGaAs W Ti 0.1 W 0.9 Cr n InGaAs, InP p InGaAs W SiO x High power SF 6 /Ar ICP etch p InGaAs Ti 0.1 W 0.9 Cr n InGaAs, InP W SiO x Low power SF 6 /Ar ICP etch Mo V. Jain Fabrication: Emitter contact 19

p InGaAs Ti 0.1 W 0.9 Cr n InGaAs, InP W SiN x PECVD deposition CF 4 /O 2 ICP etch Ti 0.1 W 0.9 W InGaAs wet etch Ti 0.1 W 0.9 W 2 nd SiN x sidewall InP wet etch Fabrication: Emitter mesa 20

Base Post Cap C cb,post does not scale with L e  Adversely effects f max as L e ↓  Need to minimize the C cb,post value Undercut below base post No contribution of Base post to C cb

Transit time Modulation Causes C cb Modulation Camnitz and Moll, Betser & Ritter, D. Root