Gene Regulation certain genes are transcribed all the time – constitutive genes synthesis of some proteins is regulated and are produced only when needed.

Slides:



Advertisements
Similar presentations
Ch. 18 Regulation of Gene Expression
Advertisements

Control of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Differential Gene Expression
Regulation of gene expression Premedical - biology.
Chromosome structure and chemical modifications can affect gene expression
Regulation of gene expression Premedical - Biology.
Gene Expression Viruses Biotechnology
To understand the concept of the gene function control. To understand the concept of the gene function control. To describe the operon model of prokaryotic.
REGULATION OF GENE EXPRESSION
Regulation of Gene Expression
NOTES: CH 18 – part 1 Regulation of Gene Expression: Prokaryotes vs
Differential Expression of Genes  Prokaryotes and eukaryotes precisely regulate gene expression in response to environmental conditions  In multicellular.
Gene Regulation results in differential Gene Expression, leading to cell Specialization Eukaryotic DNA.
Control of Gene Expression Eukaryotes. Eukaryotic Gene Expression Some genes are expressed in all cells all the time. These so-called housekeeping genes.
Regulation of Gene Expression
Introns and Exons DNA is interrupted by short sequences that are not in the final mRNA Called introns Exons = RNA kept in the final sequence.
Regulation of Gene Expression
Regulation of Gene Expression
How is Gene Expression Controlled? Transcriptional Control (whether gene is transcribed or not) –Operon: series of genes that code for specific products,
Chapter 11 Regulation of Gene Expression. Regulation of Gene Expression u Important for cellular control and differentiation. u Understanding “expression”
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: How Eukaryotic Genomes Work and Evolve Two features of eukaryotic genomes.
GENE REGULATION ch 18 CH18 Bicoid is a protein that is involved in determining the formation of the head and thorax of Drosophila.
Fig. 18-3b-2 (b) Tryptophan present, repressor active, operon off Tryptophan (corepressor) No RNA made Active repressor mRNA Protein DNA.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Gene Regulation Gene Regulation in Prokaryotes – the Jacob-Monad Model Gene Regulation in Prokaryotes – the Jacob-Monad Model certain genes are transcribed.
Gene Expression. Cell Differentiation Cell types are different because genes are expressed differently in them. Causes:  Changes in chromatin structure.
Chapter 18-Gene Expression
Control of Gene Expression Chapter Proteins interacting w/ DNA turn Prokaryotic genes on or off in response to environmental changes  Gene Regulation:
(distal control elements)
Regulation of Gene Expression From: University of Wisconsin, Department of Biochemistry.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
AP Biology Discussion Notes 2/25/2015. Goals for Today Be able to describe regions of DNA and how they are important to gene expression in Bacteria (Prokaryotes)
GENE REGULATION RESULTS IN DIFFERENTIAL GENE EXPRESSION, LEADING TO CELL SPECIALIZATION Eukaryotic DNA.
Gene Regulation Bacterial metabolism Need to respond to changes – have enough of a product, stop production waste of energy stop production.
CAMPBELL BIOLOGY Reece Urry Cain Wasserman Minorsky Jackson © 2014 Pearson Education, Inc. TENTH EDITION CAMPBELL BIOLOGY Reece Urry Cain Wasserman Minorsky.
Exam Critical Concepts DNA and Gene Control Chapters 16 & 18.
Alessandro Raganelli and Varun Rao.  Prokaryotes and eukaryotes alter gene expression in response to their changing environment  In multicellular eukaryotes,
Gene Regulation.
AP Biology Discussion Notes Monday 3/14/2016. Goals for Today Be able to describe regions of DNA and how they are important to gene expression in Bacteria.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Chapter 18 – Gene Regulation Part 2
Regulation of Gene Expression
Regulation of Prokaryotic and Eukaryotic Gene Expression
Chapter 15 Regulation of Gene Expression.
Figure 18.3 trp operon Promoter Promoter Genes of operon DNA trpR trpE
Gene Expression.
Differential Expression of Genes
Gene Regulation.
Ch 18: Regulation of Gene Expression
Gene Expression.
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Concept 18.2: Eukaryotic gene expression can be regulated at any stage
Regulation of Gene Expression
Coordinately Controlled Genes in Eukaryotes
Regulation of Gene Expression
Regulation of Gene Expression
Gene Expression AP Biology.
How are genes turned on & off?
Gene Regulation certain genes are transcribed all the time – constitutive genes synthesis of some proteins is regulated and are produced only when needed.
Regulation of Gene Expression
Gene Regulation certain genes are transcribed all the time – constitutive genes synthesis of some proteins is regulated and are produced only when needed.
Objective 3: TSWBAT recognize the processes by which bacteria respond to environmental changes by regulating transcription.
Presentation transcript:

Gene Regulation certain genes are transcribed all the time – constitutive genes synthesis of some proteins is regulated and are produced only when needed under special conditions

Gene Regulation in Prokaryotes Bacteria often respond to environmental change by regulating transcription Natural selection has favored bacteria that produce only the products needed by that cell A cell can regulate the production of enzymes by feedback inhibition or by gene regulation Gene expression in bacteria is controlled by the operon model

(a) Regulation of enzyme activity (b) Regulation of enzyme production Fig. 18-2 Precursor Feedback inhibition trpE gene Enzyme 1 trpD gene Regulation of gene expression Enzyme 2 trpC gene trpB gene Figure 18.2 Regulation of a metabolic pathway Enzyme 3 trpA gene Tryptophan (a) Regulation of enzyme activity (b) Regulation of enzyme production

Operons: The Basic Concept A cluster of functionally related genes can be under coordinated control by a single on-off “switch” The regulatory “switch” is a segment of DNA called an operator usually positioned within the promoter An operon is the entire stretch of DNA that includes the operator, the promoter, and the genes that they control

The operon can be switched off by a protein repressor The repressor prevents gene transcription by binding to the operator and blocking RNA polymerase The repressor is the product of a separate regulatory gene

The repressor can be in an active or inactive form, depending on the presence of other molecules A corepressor is a molecule that cooperates with a repressor protein to switch an operon off For example, E. coli can synthesize the amino acid tryptophan

By default the trp operon is on and the genes for tryptophan synthesis are transcribed When tryptophan is present, it binds to the trp repressor protein, which turns the operon off The repressor is active only in the presence of its corepressor tryptophan; thus the trp operon is turned off (repressed) if tryptophan levels are high

Polypeptide subunits that make up enzymes for tryptophan synthesis Fig. 18-3 trp operon Promoter Promoter Genes of operon DNA trpR trpE trpD trpC trpB trpA Regulatory gene Operator Start codon Stop codon 3 mRNA 5 mRNA RNA polymerase 5 E D C B A Protein Inactive repressor Polypeptide subunits that make up enzymes for tryptophan synthesis (a) Tryptophan absent, repressor inactive, operon on DNA No RNA made Figure 18.3 The trp operon in E. coli: regulated synthesis of repressible enzymes mRNA Protein Active repressor Tryptophan (corepressor) (b) Tryptophan present, repressor active, operon off

Repressible and Inducible Operons: Two Types of Negative Gene Regulation A repressible operon is one that is usually on; binding of a repressor to the operator shuts off transcription The trp operon is a repressible operon An inducible operon is one that is usually off; a molecule called an inducer inactivates the repressor and turns on transcription

The lac operon is an inducible operon and contains genes that code for enzymes used in the hydrolysis and metabolism of lactose By itself, the lac repressor is active and switches the lac operon off A molecule called an inducer inactivates the repressor to turn the lac operon on

The Jacob-Monad Model The Lac Operon (Inducible Operon): Jacob and Monad demonstrated how genes that code for enzymes that metabolize lactose are regulated

An operon consists of three elements: the genes that it controls a promotor region where RNA polymerase first binds an operator region between the promotor and the first gene which acts as an “on-off switch”.

Requires the production of 3 enzymes: Intestinal bacteria (E. coli) are able to absorb the disaccharide, lactose, and break and break it down to glucose and galactose (E. coli will only make these enzymes when grown in the presence of lactose) Requires the production of 3 enzymes:  - galactosidase – breaks down the lactose to glucose and galactose galactose permease – needed to transport lactose efficiently across bacterial cell membrane galactoside transacetylase – function is not clear

Structural genes of the lactose operon: Production of these enzymes is controlled by three structural genes and some closely linked DNA sequences responsible for controlling the structural genes – entire gene complex is called the operon Structural genes of the lactose operon: lacZ – codes for  - galactosidase lacY – codes for galactose permease lacA – codes for galactoside transacetylase

Next to the structural genes are 2 overlapping regulatory regions: promotor – region to which RNA polymerase binds to initiate transcription operator – region of DNA that acts as the switch that controls mRNA synthesis; sequence of bases that overlaps part of the promotor region

when lactose is absent, a repressor protein (in this case the lactose repressor) binds to the operator region – repressor protein is large enough to cover part of the promotor sequence, too, and blocks RNA polymerase from attaching to promotor – transcription is blocked when lactose is present, it acts as an inducer and “turns on” the transcription of the lactose operon lactose binds to repressor protein, inactivates it, and unblocks the promotor region allowing RNA polymerase to attach and begin transcription

Inducible enzymes usually function in catabolic pathways; their synthesis is induced by a chemical signal Repressible enzymes usually function in anabolic pathways; their synthesis is repressed by high levels of the end product Regulation of the trp and lac operons involves negative control of genes because operons are switched off by the active form of the repressor

Gene Regulation in Eukaryotes most cells in a multicellular organism contain the same DNA but they don’t all use the DNA all the time individual cells express only a small fraction of their genes – those genes that are appropriate to the function of that particular cell type transcription of a cell’s DNA must be regulated factors such pregnancy may affect gene expression (genes for milk production are not used all the time) the environment may affect which genes are transcribed (length of day may increase a change in size of sex organs affecting the production of sex hormones in birds)

Eukaryotic gene expression can be regulated at any stage Gene expression is regulated at many stages

Fig. 18-6 Signal NUCLEUS Chromatin Chromatin modification DNA Gene available for transcription Gene Transcription RNA Exon Primary transcript Intron RNA processing Tail Cap mRNA in nucleus Transport to cytoplasm CYTOPLASM mRNA in cytoplasm Degradation of mRNA Translation Figure 18.6 Stages in gene expression that can be regulated in eukaryotic cells Polypeptide Protein processing Active protein Degradation of protein Transport to cellular destination Cellular function

Gene expression may be regulated by: Regulation of Chromatin Structure Genes within heterochromatin (chromatin that is very tightly packed) are usually not expressed Chemical modifications to histones and DNA of chromatin influence both chromatin structure and gene expression Histone modification: Histone tails protrude outward from the nucleosome Histone acetylation – acetyl groups are added to histone tails causing chromatin to loosen and promote transcription The addition of methyl groups (methylation) can condense chromatin; the addition of phosphate groups (phosphorylation) next to a methylated amino acid can loosen chromatin

(a) Histone tails protrude outward from a nucleosome Fig. 18-7 Histone tails Amino acids available for chemical modification DNA double helix (a) Histone tails protrude outward from a nucleosome Figure 18.7 A simple model of histone tails and the effect of histone acetylation Unacetylated histones Acetylated histones (b) Acetylation of histone tails promotes loose chromatin structure that permits transcription

DNA Methylation Enzymes may methylate certain bases in the DNA DNA methylation is associated with reduced transcription in some species – ex. Barr bodies in mammals DNA methylation can cause long-term inactivation of genes in cellular differentiation In genomic imprinting, methylation regulates expression of either the maternal or paternal alleles of certain genes at the start of development

Epigenetic Inheritance Although the chromatin modifications just discussed do not alter DNA sequence, they may be passed to future generations of cells The inheritance of traits transmitted by mechanisms not directly involving the nucleotide sequence is called epigenetic inheritance

Regulation of Transcription Initiation Chromatin-modifying enzymes provide initial control of gene expression by making a region of DNA either more or less able to bind the transcription machinery Transcription Factors play a role To initiate transcription, eukaryotic RNA polymerase requires the assistance of proteins called transcription factors General transcription factors are essential for the transcription of all protein-coding genes In eukaryotes, high levels of transcription of particular genes depend on interactions of specific transcription factors

Post-Transcriptional Regulation Transcription alone does not account for gene expression Regulatory mechanisms can operate at various stages after transcription Such mechanisms allow a cell to fine-tune gene expression rapidly in response to environmental changes RNA processing: In alternative RNA splicing, different mRNA molecules are produced from the same primary transcript, depending on which RNA segments are treated as exons and which as introns

Exons DNA Troponin T gene Primary RNA transcript RNA splicing mRNA or Fig. 18-11 Exons DNA Troponin T gene Primary RNA transcript Figure 18.11 Alternative RNA splicing of the troponin T gene RNA splicing mRNA or

mRNA Degradation: The life span of mRNA molecules in the cytoplasm is a key to determining protein synthesis Eukaryotic mRNA is more long lived than prokaryotic mRNA The mRNA life span is determined in part by sequences in the leader and trailer regions Initiation of Translation The initiation of translation of selected mRNAs can be blocked by regulatory proteins that bind to sequences or structures of the mRNA Alternatively, translation of all mRNAs in a cell may be regulated simultaneously For example, translation initiation factors are simultaneously activated in an egg following fertilization

Protein Processing and Degradation After translation, various types of protein processing, including cleavage and the addition of chemical groups, are subject to control The length of time each protein functions in a cell can be regulated Proteasomes are giant protein complexes that bind protein molecules and degrade them

Noncoding RNAs play multiple roles in controlling gene expression Only a small fraction of DNA codes for proteins, rRNA, and tRNA (only about 1.5% of human genome codes for proteins) A significant amount of the genome may be transcribed into noncoding RNAs Noncoding RNAs regulate gene expression at two points: mRNA translation and chromatin configuration

Effects on mRNAs by MicroRNAs and Small Interfering RNAs MicroRNAs (miRNAs) are small single-stranded RNA molecules that can bind to mRNA These can degrade mRNA or block its translation

(b) Generation and function of miRNAs Fig. 18-13 Hairpin miRNA Hydrogen bond Dicer miRNA miRNA- protein complex 5 3 (a) Primary miRNA transcript Figure 18.13 Regulation of gene expression by miRNAs mRNA degraded Translation blocked (b) Generation and function of miRNAs

A program of differential gene expression leads to the different cell types in a multicellular organism During embryonic development, a fertilized egg gives rise to many different cell types Cell types are organized successively into tissues, organs, organ systems, and the whole organism Gene expression orchestrates the developmental programs of animals

A Genetic Program for Embryonic Development The transformation from zygote to adult results from three processes: cell division, cell differentiation, and morphogenesis

Cell differentiation is the process by which cells become specialized in structure and function The physical processes that give an organism its shape constitute morphogenesis Differential gene expression results from genes being regulated differently in each cell type Materials in the egg can set up gene regulation that is carried out as cells divide

Cytoplasmic Determinants and Inductive Signals An egg’s cytoplasm contains RNA, proteins, and other substances that are distributed unevenly in the unfertilized egg Cytoplasmic determinants are maternal substances in the egg that influence early development As the zygote divides by mitosis, cells contain different cytoplasmic determinants, which lead to different gene expression

(a) Cytoplasmic determinants in the egg Fig. 18-15a Unfertilized egg cell Sperm Nucleus Fertilization Two different cytoplasmic determinants Zygote Mitotic cell division Figure 18.15 Sources of developmental information for the early embryo Two-celled embryo (a) Cytoplasmic determinants in the egg

The other important source of developmental information is the environment around the cell, especially signals from nearby embryonic cells In the process called induction, signal molecules from embryonic cells cause transcriptional changes in nearby target cells Thus, interactions between cells induce differentiation of specialized cell types

(b) Induction by nearby cells Fig. 18-15b NUCLEUS Early embryo (32 cells) Signal transduction pathway Signal receptor Figure 18.15 Sources of developmental information for the early embryo Signal molecule (inducer) (b) Induction by nearby cells

Sequential Regulation of Gene Expression During Cellular Differentiation Determination commits a cell to its final fate Determination precedes differentiation Cell differentiation is marked by the production of tissue-specific proteins On the molecular level, different sets of genes are sequentially expressed in a regulated manner as new cells arise Cells become specialists for making their tissue-specific proteins