FSU Jena Nawrodt 10/06 #1/16 Ronny Nawrodt ILIAS/STREGA Annual Meeting London, 27 October 2006 Friedrich-Schiller-Universität Jena, Germany Cryogenic Q-measurements.

Slides:



Advertisements
Similar presentations
SFB C4 06/06 1/15 Anja Zimmer Friedrich-Schiller-University Jena, Germany 3 rd ILIAS-GW Meeting, London October 27 th 2006 Relaxation mechanisms in solids.
Advertisements

Selected Problems Tutorial # 3
1 Test Mass Suspensions for AIGO Ben Lee The University of Western Australia.
Nawrodt 10/07 #1/21 R. Nawrodt, A. Schröter, C. Schwarz, D. Heinert, M. Hudl, W. Vodel, A. Tünnermann, P. Seidel STREGA Meeting Tübingen 10/
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
Nanopatterning of Silicon Carbide by UV and Visible Lasers. By Arvind Battula 12/02/2004.
Interpretation of bulk material measurements Anja Schröter Institute of Solid State Physics – Low Temperature Physics Friedrich-Schiller-University.
1 Lecture 12 The cooperative relaxation of water at the pore surface of silica glasses.
EE105 Fall 2007Lecture 1, Slide 1 Lecture 1 OUTLINE Basic Semiconductor Physics – Semiconductors – Intrinsic (undoped) silicon – Doping – Carrier concentrations.
Dissipation in Nanomechanical Resonators Peter Kirton.
Mechanical amplifiers for the DUAL detector: lumped and distributed element design 3 rd ILIAS-GW Meeting, October 26 th – 27 th 2006, London Paolo Falferi.
WEEK ONE TOPIC: ELECTRONICS SOLID STATE MATERIALS  CONDUCTORS  INSULATORS  SEMICONDUCTORS.
Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
STREGA WP1/M1 mirror substrates GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
Nawrodt 05/2010 Thermal noise and material issues for ET Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Nawrodt 23/03/2011 Experimental Approaches for the Einstein Telescope Ronny Nawrodt on behalf of the Einstein Telescope Science Team and the ET DS Writing.
New materials for DUAL: the LNL activity. Dual detector : Best material parameters Two different materials ‘A’ and ‘B’ with two different Young modulus.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
R&D activities in Florence Geppo Cagnoli INFN and U. of Glasgow WG2 & WG3 Meeting – 27 th Apr Firenze.
A new facility for thermal conductivity measurements Filippo Martelli Univ. of Urbino and INFN Florence GWADW 2006 – 27/5-02/ – La Biodola.
Composite mirror suspensions development status and directions ELiTES activity interim report JGW-G
Simulation for KAGRA cryogenic payload: vibration via heat links and thermal noise Univ. Tokyo, D1 Takanori Sekiguchi.
Toward a 3rd generation European Gravitational Wave Observatory Dual R&D: presented by Massimo Cerdonio INFN Section and Department of Physics Padova how.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, H. Armandula 3, R. Bassiri 1, E. Chalkley 1 C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
18 th - 22 nd May 2015 LIGO-G GWADW Alaska Suspension Upgrades for Enhanced Interferometers Giles Hammond (Institute for Gravitational Research,
Cold damping of fused silica suspension violin modes V.P.Mitrofanov, K.V.Tokmakov Moscow State University G Z.
Francesco Cottone INFN & Physics Departments of Perugia, Pisa, Florence (Collaboration Work under VIRGO Project) Thermomechanical properties of silicon.
Effect of Charging on Thermal Noise Gregory Harry Massachusetts Institute of Technology - Core Optics and Suspensions Working Groups - March 19, 2004 –
Friedrich-Schiller-Universität Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz19 th May GWADW Kyoto 1 Losses in.
ILIAS - GWA N5 - Strega JRA3 General Meeting Orsay - November 5th-6th, 2004 M1 Activities.
Virgo-Material “macro” group M.Punturo. VIRGO-MAT2 VIRGO-MAT components Virgo-MAT is composed by three INFN groups –Firenze/Urbino M.Lorenzini, G.Losurdo,
THE PHYSICS OF RADIOLOGY The Production and Properties of X Rays Part Two BME College Sherman sheen.
Introduction to Semiconductor Technology. Outline 3 Energy Bands and Charge Carriers in Semiconductors.
Experimental investigation of dynamic Photothermal Effect
Thermal Noise performance of advanced gravitational wave detector suspensions Alan Cumming, on behalf of the University of Glasgow Suspension Team 5 th.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Thermal Noise in Thin Silicon Structures
Suspension Thermal Noise Giles Hammond (University of Glasgow) on behalf of the Strawman Red Team GWADW 2012, 18 th May 2012 LIGO-G
Mechanical Loss and Thermal Conductivity of Materials for KAGRA and ET
Optics related research for interferometric gravitational wave detectors S. Rowan for the Optics working group of the LIGO Scientific Collaboration SUPA,
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
LIGO Scientific Collaboration
Internal Mode Qs of Monolithically Suspended Test Masses in GEO600 Joshua Smith, Harald Lück, Stefan Goßler, Gianpietro Cagnoli, David Crooks, Sheila Rowan,
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz 15 th September Genoa 1 Investigation.
Design and Testing of a Silicon Suspension A. Cumming 1, G. Hammond 1, K. Haughian 1, J. Hough 1, I. Martin 1, R. Nawrodt 2, S. Rowan 1, C. Schwarz 2,
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
Modelling and Testing of Cryogenic Suspensions Giles Hammond Institute for Gravitational Research SUPA University of Glasgow on behalf of the KAGRA suspensions.
WP2-WP3 Joint Meeting - Jena - March 1-3, Several different mechanisms contribute to the thermal noise of the mirror: Brownian (BR)(substrate, coating)
Studies of materials to reduce coating thermal noise K. Craig 1, I.W. Martin 1, S. Reid 2, M. Abernathy 1, R. Bassiri 1,4, K. Borisenko 3, A. Cumming 1,
The coating thermal noise R&D for the 3rd generation: a multitechnique investigation E. Cesarini 1,2), M.Prato 3), M. Lorenzini 2) 1)Università di Urbino.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, E. Chalkley 1, H. Armandula 3, R. Bassiri 1, C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
Bonding Experiments for Cryogenic Detectors R. Douglas 1, K. Haughian 1, A. A. van Veggel 1, L. Cunningham 1, G. Hammond 1, G. Hofmann 2, J. Hough 1, A.
Measurement of coating mechanical loss Junko Katayama, K.Craig, K.Yamamoto, M.Ohashi ICRR 0.
Ronny Nawrodt 1st ELiTES General Meeting Tokyo 04/10/2012 Silicon Surfaces – Silicon Loss and Silicon Treatments –
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
Lessons from CLIO Masatake Ohashi (ICRR, The University of TOKYO) and CLIO collaborators GWADW2012 Hawaii 2012/5/16.
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz Current status of the bulk.
Loss measurements in bulk materials
“Semiconductor Physics”
Optimization of thermal noise for ET-LF sensitivity
Thermal noise calculations for cryogenic optics
Current status of coating research in Glasgow
Basic Semiconductor Physics
Thermal Noise Interferometer Update and Status
EE105 Fall 2007Lecture 1, Slide 1 Lecture 1 OUTLINE Basic Semiconductor Physics – Semiconductors – Intrinsic (undoped) silicon – Doping – Carrier concentrations.
Cryogenic Suspension for KAGRA and Suspension Thermal Noise Issues
Lecture 1 OUTLINE Basic Semiconductor Physics Reading: Chapter 2.1
Presentation transcript:

FSU Jena Nawrodt 10/06 #1/16 Ronny Nawrodt ILIAS/STREGA Annual Meeting London, 27 October 2006 Friedrich-Schiller-Universität Jena, Germany Cryogenic Q-measurements on Calcium Fluoride

FSU Jena Nawrodt 10/06 #2/16 Calcium fluoride research manufacturer: Schott 1 polishing: surface + circumference (Hellma-Optik 2 ) (100) orientation  75 mm  75 mm mass: ~ 1100 g 1 www-schott.de, 2

FSU Jena Nawrodt 10/06 #3/16 CaF 2 – Measuring Setup special cryostat 1 (5…300 K, p<10 -3 Pa) suspension: polished tungsten wire 2 ( 75 µm) electroststic exciter (~ 1.2 kV) interferometric read-out 3 (1 point) L < 0.2 nm up to 500 kHz 1 Nawrodt et al., Cryogenics 46 (2006) , 2 Advent Research Materials, 3

FSU Jena Nawrodt 10/06 #4/16 CaF 2 – Mode Scan mode excitation: high voltage ~ 1.2 kV 33 modes found within 25 kHz – 100 kHz interferometer spot CaF 2, (100) orientation,  75 mm  75 mm

FSU Jena Nawrodt 10/06 #5/16 CaF 2 – Ring-Down Experiment CaF 2, (100) orientation,  75 mm  75 mm T = (79.5  0.2) K f 0 = (  0.1) Hz t = (1490  10) s Q = (1.97  0.01)  10 8 reproducibility ~ 20% Q = (2.0  0.4)  10 8

FSU Jena Nawrodt 10/06 #6/16 CaF 2 – Measured Q-values Hz Hz Hz influence of the suspension maximum 64 K: Q = 3.2  10 8,  = 3.1  K ongoing work (defects? similar to crystalline quartz) intrinsic limit thermoelastic ? CaF 2, (100) orientation,  75 mm  75 mm

FSU Jena Nawrodt 10/06 #7/16 CaF 2 – Interaction with Suspension (1) Hz K CaF 2, (100) orientation,  75 mm  75 mm ~140 K~196 K

FSU Jena Nawrodt 10/06 #8/16 CaF 2 – Interaction with Suspension (2) Hz Hz ~140 K ~196 K

FSU Jena Nawrodt 10/06 #9/16 CaF 2 – Interaction with Suspension (3) Hz K Hz Hz Difference fits to a harmonic of the suspension! CaF 2, (100) orientation,  75 mm  75 mm At lower temperatures no resonances are possible!

FSU Jena Nawrodt 10/06 #10/16 CaF 2 – Impurities? (1) temperature dependence Hz Hz K no Arrhenius-law ? ongoing work CaF 2, (100) orientation,  75 mm  75 mm

FSU Jena Nawrodt 10/06 #11/16 CaF 2 – Impurities? (2) substrate: crystalline quartz, Q(T) understood phonon-phonon large contribution crystalline quartz, c-axis orientation,  75 mm  12 mm impurities sum

FSU Jena Nawrodt 10/06 #12/16 CaF 2 – Low Temperature Limits (1) Thermoelastic limit Braginski 1 : longitudinal mode of a bar CaF 2, (100) orientation,  75 mm  75 mm  - thermal conductivity  - thermal expansion c – heat capacity per unit volume  - mass density  0  - resonant frequency 1 Braginski et al., Systems with Small Dissipation

FSU Jena Nawrodt 10/06 #13/16 CaF 2 – Low Temperature Limits (2) thermal conductivity heat capacity  - 30 … 320 K, Batchelder et al., The Journal of Chemical Physics 41 (1964)  - 3 … 500 K, Slack et al., Phys. Rev. 122 (1961) C – 3 … 30 K, Huffman et al., Phys. Rev. 117 (1960) 53 … 300 K, Todd et al., Journal of the American Chemical Society 71 (1949) thermal expansion

FSU Jena Nawrodt 10/06 #14/16 Grating Research pure substrate 1 mm grating crystalline quartz, c-axis orientation,  75 mm  12 mm

FSU Jena Nawrodt 10/06 #15/16 Silicon research new substrates - doping: boron, phosphorus - electron / hole - different doping concentration (10 14 … cm -3 for n-doped, … cm -3 for p-doped) - CZ / floating zone  100 mm  100 mm (~2 kg)  150 mm  90 mm (~4 kg)

FSU Jena Nawrodt 10/06 #16/16 Summary calcium fluoride research: 3.210 64 K lower Q‘s at lower temperatures solid-state basic research ongoing (phonon-phonon interaction) further steps in Jena: silicon bulk research (doping!) tantala research all-reflective components