FFAG Accelerators for Proton Driver Alessandro G. Ruggiero Brookhaven National Laboratory FFAG 2007, Grenoble, France April 12-17, 2007.

Slides:



Advertisements
Similar presentations
CW neutron source Benjamin Cheymol, Angel Jesus Romero Serrano, Jesus Alonso, Lali Tchelidze 6/30/11 Benjamin Cheymol, Angel Jesus Romero Serrano, Jesus.
Advertisements

S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super.
Ion Accelerator Complex for MEIC January 28, 2010.
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
PSB magnetic cycle 160 MeV to 2 GeV with 2.5E13 protons per ring A. Blas 2 GeV magnetic cycle 29/04/ Requirements 1.Present performance: 1E13p from.
ALPHA Storage Ring Indiana University Xiaoying Pang.
Eric Prebys, FNAL.  We consider motion of particles either through a linear structure or in a circular ring USPAS, Knoxville, TN, Jan , 2014 Lecture.
Options for a 50Hz, 10 MW, Short Pulse Spallation Neutron Source G H Rees, ASTeC, CCLRC, RAL, UK.
HIAT 2009, 9 th June, Venice 1 DESIGN STUDY OF MEDICAL CYCLOTRON SCENT300 Mario Maggiore on behalf of R&D Accelerator team Laboratori Nazionali del Sud.
FFAG Concepts and Studies David Neuffer Fermilab.
22/03/1999A.Blas1 Hollow bunches A. Blas, S. Hancock, S. Koscielniak, M. Lindroos, F. Pedersen, H. Schonauer  Why: to improve space charge related problems.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Brookhaven Science Associates U.S. Department of Energy AGS Upgrade and Super Neutrino Beam DOE Annual HEP Program Review April 27-28, 2005 Derek I. Lowenstein.
Preliminary design of SPPC RF system Jianping DAI 2015/09/11 The CEPC-SppC Study Group Meeting, Sept. 11~12, IHEP.
FFAG for next Light Source Alessandro G. Ruggiero Light Source Workshop January 24-26, 2007.
ADSRs and FFAGs Roger Barlow. 7 Jan 2008Workshop on ADSRs and FFAGsSlide 2 The ADSR Accelerator Driven Subcritical Reactor Accelerator Protons ~1 GeV.
Proton Driver: Status and Plans C.R. Prior ASTeC Intense Beams Group, Rutherford Appleton Laboratory.
UK FFAG Plans Introduction to FFAGs Scaling vs non-scaling Non-scaling FFAGs Non-scaling POP Why the interest? UK plans.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
1 Muon Acceleration and FFAG II Shinji Machida CCLRC/RAL/ASTeC NuFact06 Summer School August 20-21, 2006.
J-PARC Accelerators Masahito Tomizawa KEK Acc. Lab. Outline, Status, Schedule of J-PARC accelerator MR Beam Power Upgrade.
1 Design of Proton Driver for a Neutrino Factory W. T. Weng Brookhaven National Laboratory NuFact Workshop 2006 Irvine, CA, Aug/25, 2006.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Acceleration of Protons in FFAG with Non-Scaling Lattice and Linear Field Profile Alessandro G. Ruggiero Semi-Annual International 2006 FFAG Workshop November.
Design of an Isochronous FFAG Ring for Acceleration of Muons G.H. Rees RAL, UK.
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
1 FFAG Role as Muon Accelerators Shinji Machida ASTeC/STFC/RAL 15 November, /machida/doc/othertalks/machida_ pdf/machida/doc/othertalks/machida_ pdf.
1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, ffag/machida_ ppt.
-Factory Front End Phase Rotation Gas-filled rf David Neuffer Fermilab Muons, Inc.
Electron Model for a 3-10 GeV, NFFAG Proton Driver G H Rees, RAL.
PROTON LINAC FOR INDIAN SNS Vinod Bharadwaj, SLAC (reporting for the Indian SNS Design Team)
STATUS OF BNL SUPER NEUTRINO BEAM PRORAM W. T. Weng Brookhaven National Laboratory NBI2003, KEK November 7-11, 2003.
ERHIC design status V.Ptitsyn for the eRHIC design team.
Proton FFAG Accelerator R&D at BNL Alessandro G. Ruggiero Brookhaven National Laboratory Alessandro G. Ruggiero Brookhaven National Laboratory.
FFAG Studies at RAL G H Rees. FFAG Designs at RAL Hz, 4 MW, 3-10 GeV, Proton Driver (NFFAGI) Hz,1 MW, GeV, ISIS Upgrade (NFFAG) 3.
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
WG2 (Proton FFAG) Summary G.H. Rees. Proton Driver Working Group  Participants: M. Yashimoto, S. Ohnuma, C.R. Prior, G.H. Rees, A.G. Ruggiero  Topics:
Fermilab and Muons Proton Driver (for ν-Factory, μ + -μ - Collider, …) David Neuffer Fermilab.
J-PARC Spin Physics Workshop1 Polarized Proton Acceleration in J-PARC M. Bai Brookhaven National Laboratory.
FFAG Acceleration David Neuffer Fermilab FFAG Workshop ‘03.
THE DESIGN OF THE AGS-BASED PROTON DRIVER FOR NEUTRINO FACTORY W.T. WENG, BNL FFAG WORKSHOP JULY 7-11, 2003 KEK, JAPAN.
High-Power Proton Drivers Alessandro G. Ruggiero Brookhaven National Laboratory FFAG 03 KEK International Center Japan, July , 2003.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Eric Prebys, FNAL.  We consider motion of particles either through a linear structure or in a circular ring USPAS, Hampton, VA, Jan , 2015 Longitudinal.
Multi-bunch acceleration in NS-FFAG Takeichiro Yokoi (Oxford University)
FFAG Accelerators for Radio-Isotopes Production Alessandro G. Ruggiero Brookhaven National Laboratory FFAG 2007, Grenoble, France April 12-17, 2007.
NuFACT06 Muon Source at Fermilab David Neuffer Fermilab.
F D F November 8, 2006Alessandro G. Ruggiero1 of GeV 10-MWatt Proton Driver Target 200-MeV DTL 1.0-GeV FFAG H – Stripping Foil Injection Energy,
Longitudinal aspects on injection and acceleration for HP-PS Antoine LACHAIZE On behalf of the HP-PS design team.
MAX IV linac overview and scope of automation Sara Thorin.
Neutrino Factory by Zunbeltz, Davide, Margarita, Wolfgang IDS proposal.
FFAG Studies at BNL Alessandro G. Ruggiero Brookhaven National Laboratory FFAG’06 - KURRI, Osaka, Japan - November 6-10, 2006.
F Sergei Nagaitsev (FNAL) Webex meeting Oct ICD-2 chopper requirements and proposal #1.
Beam Manufacture in PS2 M. Benedikt, S. Hancock. LHC Beams in the PS by 2015 Typeh injε l inj [evs] h ejN bunch ej RF ej [MHz] ε l ej [evs] τ ej [ns]
CEPC APDR Study Zhenchao LIU
Progress in the Multi-Ion Injector Linac Design
Injector Cyclotron for a Medical FFAG
PSB rf manipulations PSB cavities
FFAG Accelerator Proton Driver for Neutrino Factory
CEPC APDR SRF considerations(3)
Progress towards Pulsed Multi-MW CERN Proton Drivers
CEPC Injector Damping Ring
LHC (SSC) Byung Yunn CASA.
Pulsed Ion Linac for EIC
November 14, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
Physics Design on Injector I
JLEIC ion fullsize booster (2256m) space charge limit (Δν=0
Multi-Ion Injector Linac Design – Progress Summary
Cooling of C6+ ion beam with pulsed electron beam
RF system for MEIC Ion Linac: SRF and Warm Options
Presentation transcript:

FFAG Accelerators for Proton Driver Alessandro G. Ruggiero Brookhaven National Laboratory FFAG 2007, Grenoble, France April 12-17, 2007

4/16/2007FFAG Alessandro G. Ruggiero2/10 FFAG-Scenarios Three possible modes of operation; A. Acceleration with Broadband RF Cavity f rep = 1 kHz B. Pulsed Mode with Harmonic Number Jumpf rep = 10 kHz C. CW Mode with Harmonic Number Jumpf rep = CW Final Energy1 GeV Average Power10 MWatt Average Current10 mA I.S. Inj. Linac RFQ 50 MeV 250 MeV 1000 MeV FFAG-1FFAG-2 10 mA ±40.3% ±39.9% Positive Ions

4/16/2007FFAG Alessandro G. Ruggiero3/10 FFAG Size and Layout, Parameters Long Drift1.089 m Short Drift0.130 m F-Length0.301 m D-Length0.602 m No. of Periods80 Circumference = 204 m FFAG-1FFAG-2 Inj. Ej.

4/16/2007FFAG Alessandro G. Ruggiero4/10 CW Mode of Operation (  < 1) UraniumMass Number, A = 1 Charge State, Q = +1 Rest Energy, E 0 = MeV Kinetic Energy, E = 1000 MeV Average Power, P = 10 MWatt Average Current, I = P/AE = 10 mA M equally-spaced cavities around ring at constant frequency f RF and phase  RF Energy Gain  E n = (Q/A) eV n sin  RF f RF = constant =  n h n f ∞ -->  n+1 h n+1 =  n h n f ∞ = C / c  T / T =  C / C –  /   C / C <<  /  = 0, Isochronous TnTn T n + 1 T n - 1 VnVn V n + 1 V n - 1 IS Linac Cyclotron, MuonsProtons,  < 1

4/16/2007FFAG Alessandro G. Ruggiero5/10 Harmonic Number Jump (HNJ) The variation of h with  can be calculated precisely on a computer, but here we use a linear approximation ( a very good one indeed!)  E n+1 = E 0  n 2  n 3  h / (1 –  p  n 2 ) h n  h = h n+1 – h n = (Q/A) eV n sin  RF  h n is local value between cavity crossings  h is harmonic number jump between cavity crossings = –1  p  n 2 << 1 By integration Max. energy gain per crossing  E max = E f  f  f 2  h M c / f RF C tot Number of Crossingsn f = f RF C tot (1 –  i /  f ) / M  i c  h Acceleration Periodt f = f RF C tot 2 (1 –  i 2 /  f 2 ) / 2 M 2  i 2 c 2  h V n = g  n TTF (  0 /  n ) Cavity gap g = RF  0 / 2 Physical Review ST A&B 9, (2006)

4/16/2007FFAG Alessandro G. Ruggiero6/10 Consequences of Harmonic-Number Jump To avoid beam losses, the number of bunches ought to be less than the harmonic number at all time. On the other end, because of the change of the revolution period, the number of RF buckets will vary. There is a difference between the case of acceleration below and above transition energy. Below transition energy the beam extension at injection ought to be shorter than the revolution period. That is, the number of injected bunches cannot be larger than the RF harmonic number at extraction. The situation is different when the beam is injected above the transition energy. In this case the revolution period decreases and the harmonic number increases during acceleration. Below TransitionAbove Transition h f / h i =  f /  i

4/16/2007FFAG Alessandro G. Ruggiero7/10 Beam-Bunch Time Structure FFAG-1FFAG-2 Cavity Groups42 Cavities per Group816  Cavity Gap, cm RF Phase30 o 60 o RF Voltage / Cavity6 MVolt25 MVolt Orbit Separation, mm Beam rms Width, mm Beam rms Height, mm Ion Source 10 mA T final T initial Bunching Freq. = 57 MHz (1 bunch / 14 rf buckets) 45 Bunches

4/16/2007FFAG Alessandro G. Ruggiero8/10 CW Mode of Acceleration by HNJ FFAG-1FFAG-2 InjectionExtractionInjectionExtraction Circumferencem204 Kinetic EnergyMeV  Revol. Freq.MHz Revol.Periodµs h436 x 4223 x 4446 x 2313 x 2 hh RF FrequencyMHz RF Peak VoltageMVolt6x (4 x 8) cavities1 x (2 x 16) cavities RF Phasedegrees3060 Bunch AreaeV/u-µs10 Emittance, norm.π mm- mrad 10 N ions / turnx Accel. Periodµs No. of Revol.53 +1/ /2 Rep. RateCW

4/16/2007FFAG Alessandro G. Ruggiero9/10 Energy Gain Profile FFAG-1FFAG-2

4/16/2007FFAG Alessandro G. Ruggiero10/10 RF Voltage Cavity Profile for HNJ cm TM 11 TM 01 TM MHz Gap = cm 8 MV/m ± 3 MV/m 20 cm 1 m