Fast Approximation to Spherical Harmonics Rotation Sumanta Pattanaik University of Central Florida Kadi Bouatouch IRISA / INRIA Rennes Jaroslav Křivánek.

Slides:



Advertisements
Similar presentations
All-Frequency PRT for Glossy Objects Xinguo Liu, Peter-Pike Sloan, Heung-Yeung Shum, John Snyder Microsoft.
Advertisements

Jan Kautz, MPI Informatik Peter-Pike Sloan, Microsoft Research
Precomputed Radiance Transfer
Spherical Harmonic Lighting Jaroslav Křivánek. Overview Function approximation Function approximation Spherical harmonics Spherical harmonics Some other.
1 Radiance Workshop 2004 – Fribourg, Switzerland Radiance Caching for Efficient Global Illumination Computation J. Křivánek P. Gautron S. Pattanaik K.
Fast Depth-of-Field Rendering with Surface Splatting Jaroslav Křivánek CTU Prague IRISA – INRIA Rennes Jiří Žára CTU Prague Kadi Bouatouch IRISA – INRIA.
Adaptive Mesh Subdivision for Precomputed Radiance Transfer Jaroslav Křivánek Univ. of Central Florida CTU Prague IRISA – INRIA Rennes Sumanta Pattanaik.
Improved Radiance Gradient Computation Jaroslav Křivánek Pascal Gautron Kadi Bouatouch Sumanta Pattanaik ComputerGraphicsGroup.
A Novel Hemispherical Basis for Accurate and Efficient Rendering P. Gautron J. Křivánek S. Pattanaik K. Bouatouch Eurographics Symposium on Rendering 2004.
Real-time Shading with Filtered Importance Sampling
Spatial Directional Radiance Caching Václav Gassenbauer Czech Technical University in Prague Jaroslav Křivánek Cornell University Kadi Bouatouch IRISA.
Environment Mapping CSE 781 – Roger Crawfis
Spherical Harmonic Lighting of Wavelength-dependent Phenomena Clifford Lindsay, Emmanuel Agu Worcester Polytechnic Institute (USA)
Many-light methods – Clamping & compensation
Rendering with Environment Maps Jaroslav Křivánek, KSVI, MFF UK
I3D Fast Non-Linear Projections using Graphics Hardware Jean-Dominique Gascuel, Nicolas Holzschuch, Gabriel Fournier, Bernard Péroche I3D 2008.
Paper Presentation - An Efficient GPU-based Approach for Interactive Global Illumination- Rui Wang, Rui Wang, Kun Zhou, Minghao Pan, Hujun Bao Presenter.
PRT Summary. Motivation for Precomputed Transfer better light integration and light transport –dynamic, area lights –shadowing –interreflections in real-time.
An Efficient Representation for Irradiance Environment Maps Ravi Ramamoorthi Pat Hanrahan Stanford University.
CS5500 Computer Graphics © Chun-Fa Chang, Spring 2007 CS5500 Computer Graphics April 19, 2007.
Real-Time Rendering COMS , Lecture 9. Real-Time Rendering Demo Motivation: Interactive rendering with complex natural illumination and realistic,
(conventional Cartesian reference system)
Final Gathering on GPU Toshiya Hachisuka University of Tokyo Introduction Producing global illumination image without any noise.
IN4151 Introduction 3D graphics 1 Introduction to 3D computer graphics part 2 Viewing pipeline Multi-processor implementation GPU architecture GPU algorithms.
Jiaping Wang 1 Peiran Ren 1,3 Minmin Gong 1 John Snyder 2 Baining Guo 1,3 1 Microsoft Research Asia 2 Microsoft Research 3 Tsinghua University.
Exploiting Temporal Coherence for Incremental All-Frequency Relighting Ryan OverbeckRavi Ramamoorthi Aner Ben-ArtziEitan Grinspun Columbia University Ng.
Real-Time High Quality Rendering COMS 6160 [Fall 2004], Lecture 3 Overview of Course Content
Precomputed Radiance Transfer Harrison McKenzie Chapter.
Fast Global-Illumination on Dynamic Height Fields
Matrix Row-Column Sampling for the Many-Light Problem Miloš Hašan (Cornell University) Fabio Pellacini (Dartmouth College) Kavita Bala (Cornell University)
Titre.
Pre-computed Radiance Transfer Jaroslav Křivánek, KSVI, MFF UK
Intrinsic Parameterization for Surface Meshes Mathieu Desbrun, Mark Meyer, Pierre Alliez CS598MJG Presented by Wei-Wen Feng 2004/10/5.
ICheat: A Representation for Artistic Control of Cinematic Lighting Juraj ObertJaroslav Křivánek Daniel Sýkora Fabio Pellacini Sumanta Pattanaik
Technology and Historical Overview. Introduction to 3d Computer Graphics  3D computer graphics is the science, study, and method of projecting a mathematical.
Efficient Irradiance Normal Mapping Ralf Habel, Michael Wimmer Institute of Computer Graphics and Algorithms Vienna University of Technology.
Adaptive Real-Time Rendering of Planetary Terrains WSCG 2010 Raphaël Lerbour Jean-Eudes Marvie Pascal Gautron THOMSON R&D, Rennes, France.
Sebastian Enrique Columbia University Real-Time Rendering Using CUReT BRDF Materials with Zernike Polynomials CS Topics.
Spherical Harmonic Lighting: The Gritty Details Robin Green R&D Programmer Sony Computer Entertainment America.
Jonathan M Chye Technical Supervisor : Mr Matthew Bett 2010.
Sebastian Enrique Columbia University Relighting Framework COMS 6160 – Real-Time High Quality Rendering Nov 3 rd, 2004.
Real-Time Rendering Digital Image Synthesis Yung-Yu Chuang 01/03/2006 with slides by Ravi Ramamoorthi and Robin Green.
An Efficient Representation for Irradiance Environment Maps Ravi Ramamoorthi Pat Hanrahan Stanford University SIGGRAPH 2001 Stanford University SIGGRAPH.
Real-Time Relighting Digital Image Synthesis Yung-Yu Chuang 1/10/2008 with slides by Ravi Ramamoorthi, Robin Green and Milos Hasan.
Real-time Shading with Filtered Importance Sampling Jaroslav Křivánek Czech Technical University in Prague Mark Colbert University of Central Florida.
View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.
A Frequency Analysis of Light Transport Fr é do Durand – MIT CSAIL With Nicolas Holzschuch, Cyril Soler, Eric Chan & Francois Sillion Artis Gravir/Imag-Inria.
All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation Ren Ng Stanford Ravi Ramamoorthi Columbia SIGGRAPH 2003 Pat Hanrahan Stanford.
Quick survey about PRT Valentin JANIAUT KAIST (Korea Advanced Institute of Science and Technology)
Real-time Rendering of Heterogeneous Translucent Objects with Arbitrary Shapes Stefan Kinauer KAIST (Korea Advanced Institute of Science and Technology)
Fast Approximation to Spherical Harmonics Rotation
Real-Time High Quality Rendering CSE 291 [Winter 2015], Lecture 2 Graphics Hardware Pipeline, Reflection and Rendering Equations, Taxonomy of Methods
- Laboratoire d'InfoRmatique en Image et Systèmes d'information
1 Temporal Radiance Caching P. Gautron K. Bouatouch S. Pattanaik.
Global Illumination. Local Illumination  the GPU pipeline is designed for local illumination  only the surface data at the visible point is needed to.
Spherical Harmonics in Actual Games
Radiance Caching for Global Illumination Computation on Glossy Surfaces A dissertation prepared by Jaroslav Křivánek under the joint supervision of Kadi.
Thank you for the introduction
Non-Linear Kernel-Based Precomputed Light Transport Paul Green MIT Jan Kautz MIT Wojciech Matusik MIT Frédo Durand MIT Henrik Wann Jensen UCSD.
Radiance Cache Splatting: A GPU-Friendly Global Illumination Algorithm P. Gautron J. Křivánek K. Bouatouch S. Pattanaik.
All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation Ren Ng Stanford Ravi Ramamoorthi Columbia Pat Hanrahan Stanford.
Real-Time Relief Mapping on Arbitrary Polygonal Surfaces Fabio Policarpo Manuel M. Oliveira Joao L. D. Comba.
Toward Real-Time Global Illumination. Global Illumination == Offline? Ray Tracing and Radiosity are inherently slow. Speedup possible by: –Brute-force:
Toward Real-Time Global Illumination. Project Ideas Distributed ray tracing Extension of the radiosity assignment Translucency (subsurface scattering)
SHADOW CASTER CULLING FOR EFFICIENT SHADOW MAPPING JIŘÍ BITTNER 1 OLIVER MATTAUSCH 2 ARI SILVENNOINEN 3 MICHAEL WIMMER 2 1 CZECH TECHNICAL UNIVERSITY IN.
Computing Vertex Normals from Arbitrary Meshes
Projective Transformations for Image Transition Animations
CS5500 Computer Graphics April 17, 2006 CS5500 Computer Graphics
Frame Buffer Applications
Real-time Global Illumination with precomputed probe
Presentation transcript:

Fast Approximation to Spherical Harmonics Rotation Sumanta Pattanaik University of Central Florida Kadi Bouatouch IRISA / INRIA Rennes Jaroslav Křivánek Czech Technical University Jaakko Konttinen University of Central Florida Jiří Žára Czech Technical University ComputerGraphicsGroup

Jaroslav Křivánek – Spherical Harmonics Rotation2/40 Presentation Topic What? Rotate a spherical function represented by spherical harmonics How? Approximation by a truncated Taylor expansion Why? Applications in real-time rendering and global illumination

Jaroslav Křivánek – Spherical Harmonics Rotation3/40 Unfortunate Finding Our technique is only MARGINALLY FASTER than a previous technique.

Jaroslav Křivánek – Spherical Harmonics Rotation4/40 Questions You Might Want to Ask Q1: So why taking up a SIGGRAPH sketch slot? Found out only very recently. Q2: And before? Implementation of previous work was NOT OPTIMIZED. Q3: Does optimization change that much? In this case, it does (4-6 times speedup). Q4: How did you find out? I’ll explain later.

Jaroslav Křivánek – Spherical Harmonics Rotation5/40 Talk Overview Spherical Harmonics Spherical Harmonics Rotation Previous Techniques Our Rotation Approximation Applications & Results Conclusions

Jaroslav Křivánek – Spherical Harmonics Rotation6/40 Talk Overview Spherical Harmonics Spherical Harmonics Rotation Previous Techniques Our Rotation Approximation Applications & Results Conclusions

Jaroslav Křivánek – Spherical Harmonics Rotation7/40 Spherical Harmonics Basis functions on the sphere

Jaroslav Křivánek – Spherical Harmonics Rotation8/40 Spherical Harmonics

Jaroslav Křivánek – Spherical Harmonics Rotation9/40 Spherical Harmonics Function represented by a vector of coefficients: n … order

Jaroslav Křivánek – Spherical Harmonics Rotation10/40 Talk Overview Spherical Harmonics Spherical Harmonics Rotation Previous Techniques Our Rotation Approximation Applications & Results Conclusions

Jaroslav Křivánek – Spherical Harmonics Rotation11/40 SH Rotation – Problem Definition Given coefficients , representing a spherical function find coefficients  for directly from coefficients .

Jaroslav Křivánek – Spherical Harmonics Rotation12/40 SH Rotation Matrix Rotation = linear transformation by R: R … spherical harmonics rotation matrix Given the desired 3D rotation, find the matrix R

Jaroslav Křivánek – Spherical Harmonics Rotation13/40 Talk Overview Spherical Harmonics Spherical Harmonics Rotation Previous Techniques Our Rotation Approximation Applications & Results Conclusions

Jaroslav Křivánek – Spherical Harmonics Rotation14/40 Previous Work – Molecular Chemistry [Ivanic and Ruedenberg 1996] [Choi et al. 1999] Slow Bottleneck in rendering applications

Jaroslav Křivánek – Spherical Harmonics Rotation15/40 Previous Work – Computer Graphics [Kautz et al. 2002] zxzxz-decomposition THE fastest previous method THE method we compare against THE method nearly as fast as ours if properly optimized

Jaroslav Křivánek – Spherical Harmonics Rotation16/40 zxzxz-decomposition [Kautz et al. 02] Decompose the 3D rotation into ZYZ Euler angles: R = R Z (  ) R Y (  ) R Z (  )

Jaroslav Křivánek – Spherical Harmonics Rotation17/40 zxzxz-decomposition [Kautz et al. 02] R = R Z (  ) R Y (  ) R Z (  ) Rotation around Z is simple and fast Rotation around Y still a problem

Jaroslav Křivánek – Spherical Harmonics Rotation18/40 zxzxz-decomposition [Kautz et al. 02] Rotation around Y Decomposition of R Y (  ) into R X (+90˚) R Z (  ) R X (-90˚) R = R Z (  ) R X (+90˚) R Z (  ) R X (-90˚) R Z (  ) Rotation around X is fixed-angle pre-computed matrix

Jaroslav Křivánek – Spherical Harmonics Rotation19/40 zxzxz-decomposition [Kautz et al. 02] Optimized implementation – unrolled code 4-6 x faster

Jaroslav Křivánek – Spherical Harmonics Rotation20/40 Talk Overview Spherical Harmonics Spherical Harmonics Rotation Previous Techniques Our Rotation Approximation Applications & Results Conclusions

Jaroslav Křivánek – Spherical Harmonics Rotation21/40 Our Rotation 1. zyz decomposition: R = R Z (  ) R Y (  ) R Z (  ) 2. R Y (  ) approximated by a truncated Taylor expansion

Jaroslav Křivánek – Spherical Harmonics Rotation22/40 Taylor Expansion of R Y (  )

Jaroslav Křivánek – Spherical Harmonics Rotation23/40 Taylor Expansion of R Y (  ) “1.5-th order Taylor exp.” Fixed, sparse matrices

Jaroslav Křivánek – Spherical Harmonics Rotation24/40 SH Rotation – Results L2 error for a unit length input vector

Jaroslav Křivánek – Spherical Harmonics Rotation25/40 Talk Overview Spherical Harmonics Spherical Harmonics Rotation Previous Techniques Our Rotation Approximation Applications & Results Conclusions

Jaroslav Křivánek – Spherical Harmonics Rotation26/40 Application 1 – Radiance Caching Global illumination: smooth indirect term Sparse computation Interpolation

Jaroslav Křivánek – Spherical Harmonics Rotation27/40 Incoming Radiance Interpolation Interpolate coefficient vectors  1 and  2 p1p1 p2p2 p

Jaroslav Křivánek – Spherical Harmonics Rotation28/40 Interpolation on Curved Surfaces

Jaroslav Křivánek – Spherical Harmonics Rotation29/40 Interpolation on Curved Surfaces Align coordinate frames in interpolation pp1p1 R

Jaroslav Křivánek – Spherical Harmonics Rotation30/40 Radiance Caching Results

Jaroslav Křivánek – Spherical Harmonics Rotation31/40 Radiance Caching Results Direct illumination Direct + indirect

Jaroslav Křivánek – Spherical Harmonics Rotation32/40 More radiance caching: Temporal radiance caching, 3:45, room 210

Jaroslav Křivánek – Spherical Harmonics Rotation33/40 Application 2 – Normal Mapping Original method by [Kautz et al. 2002] Environment map Arbitrary BRDF Extended with normal mapping Needs per-pixel rotation to align with the modulated normal Rotation implemented in fragment shader

Jaroslav Křivánek – Spherical Harmonics Rotation34/40 Normal Mapping Results Rotation IgnoredOur Rotation

Jaroslav Křivánek – Spherical Harmonics Rotation35/40 Normal Mapping Results Rotation IgnoredOur Rotation

Jaroslav Křivánek – Spherical Harmonics Rotation36/40 Comparison – Time per rotation (CPU) DirectX October 2004: 1.8 x slower than Ivanic Order 6Order 10 T [  s]

Jaroslav Křivánek – Spherical Harmonics Rotation37/40 Talk Overview Spherical Harmonics Spherical Harmonics Rotation Previous Techniques Our Rotation Approximation Applications & Results Conclusions

Jaroslav Křivánek – Spherical Harmonics Rotation38/40 Conclusion Proposed approximate SH rotation Slightly faster than previous technique SH Rotation Speed 1. Our approximation 2. DX 9.0c (up to order 6) 3. zxzxz-decomposition with unrolled code Lesson learned Micro-optimization important for fair comparisons

Jaroslav Křivánek – Spherical Harmonics Rotation39/40 Future Work Fast approximate rotation for wavelets

Jaroslav Křivánek – Spherical Harmonics Rotation40/40 Questions ? ? ? ? ? ? ? ? Code on-line (SH rotation, radiance caching)

Jaroslav Křivánek – Spherical Harmonics Rotation41/40 Appendix – Bibliography [Křivánek et al. 2005]Jaroslav Křivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. Radiance caching for efficient global illumination computation. IEEE Transactions on Visualization and Computer Graphics, 11(5), September/October [Ivanic and Ruedenberg 1996]Joseph Ivanic and Klaus Ruedenberg. Rotation matrices for real spherical harmonics. direct determination by recursion. J. Phys. Chem., 100(15):6342–6347, Joseph Ivanic and Klaus Ruedenberg. Additions and corrections : Rotation matrices for real spherical harmonics. J. Phys. Chem. A, 102(45):9099– 9100, [Choi et al. 1999]Cheol Ho Choi, Joseph Ivanic, Mark S. Gordon, and Klaus Ruedenberg. Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys., 111(19):8825–8831, [Kautz et al. 2002] Jan Kautz, Peter-Pike Sloan, and John Snyder. Fast, arbitrary BRDF shading for low-frequency lighting using spherical harmonics. In Proceedings of the 13 th Eurographics workshop on Rendering, pages 291–296. Eurographics Association, 2002.