Copyright © 2010 Pearson Education, Inc. Slide 26 - 1.

Slides:



Advertisements
Similar presentations
Copyright © 2010 Pearson Education, Inc. Slide
Advertisements

Chapter 26 Comparing Counts
Chapter 11 Other Chi-Squared Tests
Basic Statistics The Chi Square Test of Independence.
© 2010 Pearson Prentice Hall. All rights reserved The Chi-Square Test of Independence.
1-1 Copyright © 2015, 2010, 2007 Pearson Education, Inc. Chapter 25, Slide 1 Chapter 25 Comparing Counts.
Chapter 26: Comparing Counts
Inference for Categorical Data Chi-SquareCh.11. Facts about Chi-Square ► Takes only positive values and the graph is skewed to the right ► Test Statistic.
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 14 Goodness-of-Fit Tests and Categorical Data Analysis.
Chapter 26: Comparing Counts. To analyze categorical data, we construct two-way tables and examine the counts of percents of the explanatory and response.
Presentation 12 Chi-Square test.
© 2004 Prentice-Hall, Inc.Chap 12-1 Basic Business Statistics (9 th Edition) Chapter 12 Tests for Two or More Samples with Categorical Data.
GOODNESS OF FIT TEST & CONTINGENCY TABLE
Copyright © 2012 Pearson Education. All rights reserved Copyright © 2012 Pearson Education. All rights reserved. Chapter 15 Inference for Counts:
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 11-1 Chapter 11 Chi-Square Tests Business Statistics, A First Course 4 th Edition.
 Involves testing a hypothesis.  There is no single parameter to estimate.  Considers all categories to give an overall idea of whether the observed.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 26 Comparing Counts.
Chapter 26: Comparing Counts AP Statistics. Comparing Counts In this chapter, we will be performing hypothesis tests on categorical data In previous chapters,
Copyright © 2010 Pearson Education, Inc. Warm Up- Good Morning! If all the values of a data set are the same, all of the following must equal zero except.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Inference on Categorical Data 12.
Chapter 11: Applications of Chi-Square. Count or Frequency Data Many problems for which the data is categorized and the results shown by way of counts.
Chapter 11: Applications of Chi-Square. Chapter Goals Investigate two tests: multinomial experiment, and the contingency table. Compare experimental results.
Chapter 11 Chi-Square Procedures 11.3 Chi-Square Test for Independence; Homogeneity of Proportions.
CHAPTER 26: COMPARING COUNTS OF CATEGORICAL DATA To test claims and make inferences about counts for categorical variables Objective:
Copyright © 2009 Cengage Learning 15.1 Chapter 16 Chi-Squared Tests.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Chapter 26: Comparing counts of categorical data
Chi-Square Procedures Chi-Square Test for Goodness of Fit, Independence of Variables, and Homogeneity of Proportions.
Introduction Many experiments result in measurements that are qualitative or categorical rather than quantitative. Humans classified by ethnic origin Hair.
Other Chi-Square Tests
1-1 Copyright © 2015, 2010, 2007 Pearson Education, Inc. Chapter 25, Slide 1 Chapter 26 Comparing Counts.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
CHAPTER 11 SECTION 2 Inference for Relationships.
Slide 26-1 Copyright © 2004 Pearson Education, Inc.
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc Chapter 16 Chi-Squared Tests.
+ Chi Square Test Homogeneity or Independence( Association)
Copyright © 2010 Pearson Education, Inc. Chapter 22 Comparing Two Proportions.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 22 Comparing Two Proportions.
Comparing Counts.  A test of whether the distribution of counts in one categorical variable matches the distribution predicted by a model is called a.
© Copyright McGraw-Hill CHAPTER 11 Other Chi-Square Tests.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Chapter 13 Inference for Counts: Chi-Square Tests © 2011 Pearson Education, Inc. 1 Business Statistics: A First Course.
Slide 1 Copyright © 2004 Pearson Education, Inc..
Copyright © 2010 Pearson Education, Inc. Warm Up- Good Morning! If all the values of a data set are the same, all of the following must equal zero except.
11.2 Tests Using Contingency Tables When data can be tabulated in table form in terms of frequencies, several types of hypotheses can be tested by using.
Section 12.2: Tests for Homogeneity and Independence in a Two-Way Table.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 11 Analyzing the Association Between Categorical Variables Section 11.2 Testing Categorical.
Chapter 14 – 1 Chi-Square Chi-Square as a Statistical Test Statistical Independence Hypothesis Testing with Chi-Square The Assumptions Stating the Research.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Comparing Counts Chapter 26. Goodness-of-Fit A test of whether the distribution of counts in one categorical variable matches the distribution predicted.
+ Section 11.1 Chi-Square Goodness-of-Fit Tests. + Introduction In the previous chapter, we discussed inference procedures for comparing the proportion.
Statistics 26 Comparing Counts. Goodness-of-Fit A test of whether the distribution of counts in one categorical variable matches the distribution predicted.
Chapter 11: Categorical Data n Chi-square goodness of fit test allows us to examine a single distribution of a categorical variable in a population. n.
Class Seven Turn In: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 For Class Eight: Chapter 20: 18, 20, 24 Chapter 22: 34, 36 Read Chapters 23 &
Comparing Observed Distributions A test comparing the distribution of counts for two or more groups on the same categorical variable is called a chi-square.
Chi Square Test of Homogeneity. Are the different types of M&M’s distributed the same across the different colors? PlainPeanutPeanut Butter Crispy Brown7447.
Goodness-of-Fit A test of whether the distribution of counts in one categorical variable matches the distribution predicted by a model is called a goodness-of-fit.
Comparing Counts Chi Square Tests Independence.
CHAPTER 26 Comparing Counts.
Chapter 12 Tests with Qualitative Data
Chapter 25 Comparing Counts.
AP Stats Check In Where we’ve been… Chapter 7…Chapter 8…
Chapter 11: Inference for Distributions of Categorical Data
Inference on Categorical Data
Paired Samples and Blocks
Analyzing the Association Between Categorical Variables
Chapter 26 Comparing Counts.
Chapter 26 Comparing Counts Copyright © 2009 Pearson Education, Inc.
Chapter 26 Comparing Counts.
Presentation transcript:

Copyright © 2010 Pearson Education, Inc. Slide

Copyright © 2010 Pearson Education, Inc. Slide Solution: B

Copyright © 2010 Pearson Education, Inc. Chapter 13 Inference for Tables Chi-Squared Slide

Copyright © 2010 Pearson Education, Inc. Slide Goodness-of-Fit A test of whether the distribution of counts in one categorical variable matches the distribution predicted by a model is called a goodness-of-fit test.

Copyright © 2010 Pearson Education, Inc. Slide Assumptions and Conditions Counted Data Condition: Check that the data are counts for the categories of a categorical variable. Independence Assumption: The counts in the cells should be independent of each other. Randomization Condition: The individuals who have been counted and whose counts are available for analysis should be a random sample from some population. Sample Size Assumption: We must have enough data for the methods to work. Expected Cell Frequency Condition: We should expect to see at least 5 individuals in each cell.

Copyright © 2010 Pearson Education, Inc. Slide Calculations The test statistic, called the chi-square (or chi- squared) statistic, is found by adding up the sum of the squares of the deviations between the observed and expected counts divided by the expected counts:

Copyright © 2010 Pearson Education, Inc. Slide Calculations (cont.) The chi-square models are actually a family of distributions indexed by degrees of freedom (much like the t-distribution). The number of degrees of freedom for a goodness-of-fit test is n – 1, where n is the number of categories. The chi-square statistic is used only for testing hypotheses, not for constructing confidence intervals. If the observed counts don’t match the expected, the statistic will be large—it can’t be “too small.” So the chi-square test is always one-sided. If the calculated statistic value is large enough, we’ll reject the null hypothesis.

Copyright © 2010 Pearson Education, Inc. Slide The Chi-Square Calculation 1.Find the expected values: Every model gives a hypothesized proportion for each cell. The expected value is the product of the total number of observations times this proportion. 2.Compute the residuals: Once you have expected values for each cell, find the residuals, Observed – Expected. 3.Square the residuals.

Copyright © 2010 Pearson Education, Inc. Slide The Chi-Square Calculation (cont.) 4.Compute the components. Now find the components for each cell. 5.Find the sum of the components (that’s the chi- square statistic).

Copyright © 2010 Pearson Education, Inc. Slide The Chi-Square Calculation (cont.) 6.Find the degrees of freedom. It’s equal to the number of cells minus one. 7.Test the hypothesis.  Use your chi-square statistic to find the P- value. (Remember, you’ll always have a one- sided test.)  Large chi-square values mean lots of deviation from the hypothesized model, so they give small P-values.

Copyright © 2010 Pearson Education, Inc. Example Suppose we are testing for independence of the variables (ethnicity and opinion) in the previous example. For the two-way table with the given marginal values, find the expected value for the cell marked "Exp." Slide

Copyright © 2010 Pearson Education, Inc. Example Slide

Copyright © 2010 Pearson Education, Inc. Example A study of 150 cities was conducted to determine if crime rate is related to outdoor temperature. The results of the study are summarized in the following table: Do these data provide evidence, at the 0.02 level of significance, that the crime rate is related to the temperature at the time of the crime? Slide

Copyright © 2010 Pearson Education, Inc. Example An AP Statistics student noted that the probability distribution for a binomial random variable with n = 4 and p = 0.3 is approximately given by: The student decides to test the randBin function on her TI-83/84 by putting 500 values into a list using this function (randBin(4,0.3,500)→ L1) and counting the number of each outcome. She obtained Do these data provide evidence that the randBin function on the calculator is correctly generating values from this distribution? Slide

Copyright © 2010 Pearson Education, Inc. Slide Comparing Observed Distributions (13.2) A test comparing the distribution of counts for two or more groups on the same categorical variable is called a chi- square test of homogeneity. The statistic that we calculate for this test is identical to the chi-square statistic for goodness-of-fit. In this test, however, we ask whether choices are the same among different groups (i.e., there is no model). The expected counts are found directly from the data and we have different degrees of freedom.

Copyright © 2010 Pearson Education, Inc. Slide Assumptions and Conditions The assumptions and conditions are the same as for the chi-square goodness-of-fit test: Counted Data Condition: The data must be counts. Randomization Condition and 10% Condition: As long as we don’t want to generalize, we don’t have to check these conditions. Expected Cell Frequency Condition: The expected count in each cell must be at least 5.

Copyright © 2010 Pearson Education, Inc. Slide Calculations We calculated the chi-square statistic as we did in the goodness-of-fit test: In this situation we have (R – 1)(C – 1) degrees of freedom, where R is the number of rows and C is the number of columns.

Copyright © 2010 Pearson Education, Inc. Slide Examining the Residuals When we reject the null hypothesis, it’s always a good idea to examine residuals. For chi-square tests, we want to work with standardized residuals, since we want to compare residuals for cells that may have very different counts. To standardize a cell’s residual, we just divide by the square root of its expected value:

Copyright © 2010 Pearson Education, Inc. Slide Independence Contingency tables categorize counts on two (or more) variables so that we can see whether the distribution of counts on one variable is contingent on the other. A test of whether the two categorical variables are independent examines the distribution of counts for one group of individuals classified according to both variables in a contingency table. A chi-square test of independence uses the same calculation as a test of homogeneity.

Copyright © 2010 Pearson Education, Inc. Slide

Copyright © 2010 Pearson Education, Inc. Slide Assumptions and Conditions We still need counts and enough data so that the expected values are at least 5 in each cell. If we’re interested in the independence of variables, we usually want to generalize from the data to some population. In that case, we’ll need to check that the data are a representative random sample from that population.

Copyright © 2010 Pearson Education, Inc. Slide What have we learned? All three methods we examined look at counts of data in categories and rely on chi-square models. Goodness-of-fit tests compare the observed distribution of a single categorical variable to an expected distribution based on theory or model. Tests of homogeneity compare the distribution of several groups for the same categorical variable. Tests of independence examine counts from a single group for evidence of an association between two categorical variables.

Copyright © 2010 Pearson Education, Inc. Example Slide A random sample of 400 residents of large western city are polled to determine their attitudes concerning the affirmative action admissions policy of the local university. The residents are classified according to ethnicity (white, black, Asian) and whether or not they favor the affirmative action policy. The results are presented in the following table. Are the variables independent in the population?"

Copyright © 2010 Pearson Education, Inc. Example Slide