Reflective properties of ellipse. Ellipse construction: w/id/1225391 Demonstration with geogebra Major axis minor.

Slides:



Advertisements
Similar presentations
A circle is tangent to the x-axis at (-2, 0) and the y-axis at (0, 2). What is the equation of this circle?
Advertisements

Conic sections project
Ellipses Objective: Be able to get the equation of an ellipse from given information or the graph Be able to find the key features of and graph an ellipse.
9.1.1 – Conic Sections; The Ellipse
Advanced Geometry Conic Sections Lesson 4
Ellipse Standard Equation Hyperbola. Writing equation of an Ellipse Example: write the standard form on an ellipse that has a vertex at (0,5) and co-vertex.
What is the standard form of a parabola who has a focus of ( 1,5) and a directrix of y=11.
1 Section 10.6: Translating Conic Sections What You’ll Learn: to translate conic sections and write and identify the equation of translated conic section.
& & & Formulas.
Translating Conic Sections
Section 7.3 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
EXAMPLE 1 Graph the equation of a translated circle Graph (x – 2) 2 + (y + 3) 2 = 9. SOLUTION STEP 1 Compare the given equation to the standard form of.
Sullivan Algebra and Trigonometry: Section 10.3 The Ellipse Objectives of this Section Find the Equation of an Ellipse Graph Ellipses Discuss the Equation.
Ellipses Topic 7.4. Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
a b Center at( h,k ) An ellipse with major axis parallel to x -axis c Definition.
Ellipses Topic Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
What am I?. x 2 + y 2 – 6x + 4y + 9 = 0 Circle.
Warm up Write the standard form of the equation: Then find the radius and the coordinates of the center. Graph the equation.
Ellipse Notes. What is an ellipse? The set of all points, P, in a plane such that the sum of the distances between P and the foci is constant.
Conics Lesson 3: Ellipses Mrs. Parziale. Ellipses Equation for Ellipse: Center = (h, k) a = how far to count out horizontally 2a = length of horizontal.
Conic Sections The Ellipse Part A. Ellipse Another conic section formed by a plane intersecting a cone Ellipse formed when.
Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and F2) called foci is constant.
10.3 Ellipses Foci Major Axis / Minor Axis Vertices / Co- Vertices Eccentricity.
Conics Ellipses. Ellipse Definition: the set of all points in a plane whose distances from two fixed points in the plane have a constant sum. The fixed.
8.3 Ellipses May 15, Ellipse Definition: Is the set of all points such that the sum of the distances between the point and the foci is the same.
Making graphs and using equations of ellipses. An ellipse is the set of all points P in a plane such that the sum of the distance from P to 2 fixed points.
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
Hyperbolas Objective: graph hyperbolas from standard form.
10.2 Ellipses. Ellipse – a set of points P in a plane such that the sum of the distances from P to 2 fixed points (F 1 and F 2 ) is a given constant K.
March 22 nd copyright2009merrydavidson. Horizontal Ellipse An ellipse is the set of all points for which the sum of the distances at 2 fixed points is.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Get out Ellipse: Notes Worksheet and complete #2 & #3 (Notes Sheet From Yesterday)
6.2 Equations of Circles +9+4 Completing the square when a=1
Center (-4, -6); Point of Tangency (-4, -9)
10.2 Ellipses.
Ellipses Date: ____________.
foci {image} None of these choices
Graph and Write Equations of Elllipses
Vertices {image} , Foci {image} Vertices (0, 0), Foci {image}
Ellipses 5.3 (Chapter 10 – Conics). Ellipses 5.3 (Chapter 10 – Conics)
MATH 1330 Section 8.2b.
Section 10.2 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Graph and Write Equations of Ellipses
Ellipses Ellipse: set of all points in a plane such that the sum of the distances from two given points in a plane, called the foci, is constant. Sum.
Review Circles: 1. Find the center and radius of the circle.
distance out from center distance up/down from center
Today in Pre-Calculus Go over homework Chapter 8 – need a calculator
Warm-Up   Range Graphically (#9 on CQ#1).
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
Unit 1 – Conic Sections Section 1.4 – The Ellipse Calculator Required
9.4 Graph & Write Equations of Ellipses
Warm-Up   Range Graphically (#9 on CQ#1).
Sullivan Algebra and Trigonometry: Section 11.3
Conic Sections The Ellipse Part A.
Section 10.2 Ellipses.
10-1 Ellipses Fumbles and Kickoffs.
Warm-up Write the equation of an ellipse centered at (0,0) with major axis length of 10 and minor axis length Write equation of a hyperbola centered.
distance out from center distance up/down from center
Writing Equations of Ellipses
Section 10.3 – The Ellipse a > b a – semi-major axis
Ellipse Skills Practice 70
4 minutes Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
Warm-Up Write the standard equation for an ellipse with foci at (-5,0) and (5,0) and with a major axis of 18. Sketch the graph.
5.3 Ellipse (part 2) Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and.
L10-4 Obj: Students will find equations for ellipses and graph ellipses. Ellipse Definition: Each fixed point F is a focus of an ellipse (plural: foci).
Warm up: Write an equation for the circle that has center (5, 0), and radius 6 units. A. x2 + (y – 5)2 = 36 B. x2 – (y – 5)2 = 36 C. (x – 5)2 + y2 = 36.
Homework Questions Page 188 #1-17 odd.
Ellipse.
10.3 Ellipses.
What is The equation of an Ellipse
Presentation transcript:

Reflective properties of ellipse.

Ellipse construction: w/id/ Demonstration with geogebra Major axis minor axis

“Watermelon” Center (h,k) Foci Length of major axis 2a Length of minor axis 2b f f f f a c b a “Larry”

Graph Label “corners” Identify: Center Foci Length of major axis Length of minor axis

Graph Label “corners” Identify: Center (2,-3) Foci (5,-3)(-1,-3) Length of major axis 10 units Length of minor axis 8 units

Write the equation for the ellipse in standard form [(h,k) form.]