Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. The.

Slides:



Advertisements
Similar presentations
Network Layer4-1 Hierarchical Routing scale: with 200 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would.
Advertisements

Lecture 9 Overview. Hierarchical Routing scale – with 200 million destinations – can’t store all dests in routing tables! – routing table exchange would.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 22 Omar Meqdadi Department of Computer Science and Software Engineering University.
Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol –Datagram format.
13 –Routing Protocols Network Layer4-1. Network Layer4-2 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd.
Lecture 8 Overview. Graph abstraction u y x wv z Graph: G = (N,E) N = set of routers = { u, v, w, x, y, z } E = set of links ={ (u,v),
4a-1 CSE401: Computer Networks Hierarchical Routing & Routing in Internet S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
Data Communication and Networks Lectures 8 and 9 Networks: Part 2 Routing Algorithms and Routing Protocols October 26, November 2, 2006.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
1 Lecture 12: Routing Slides adapted from: Computer Networks: A Systems Approach (Peterson and Davis) Computer Networking: A Top Down Approach Featuring.
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
Routing Algorithms and Routing in the Internet
CPSC441: Routing1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 hours.
Network Layer4-1 Chapter 4: Network Layer, partb The slides are adaptations of the slides available by the main textbook authors, Kurose&Ross.
14 – Inter/Intra-AS Routing
Lecture 7 Overview. Two Key Network-Layer Functions forwarding: move packets from router’s input to appropriate router output routing: determine route.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
Routing Algorithms & Routing Protocols  Shortest Path Routing  Flooding  Distance Vector Routing  Link State Routing  Hierarchical Routing  Broadcast.
1 Announcement #1 r Did you all receive homework #1 and #2? r Homework #3 will be available online during the day r Midterm.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 18.
1 ECE453 – Introduction to Computer Networks Lecture 10 – Network Layer (Routing II)
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
14 – Inter/Intra-AS Routing Network Layer Hierarchical Routing scale: with > 200 million destinations: can’t store all dest’s in routing tables!
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
Introduction 1 Lecture 21 Network Layer (Routing Activity) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
RSC Part II: Network Layer 6. Routing in the Internet (2 nd Part) Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Introduction 1 Lecture 19 Network Layer (Routing Protocols) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
Network Layer4-1 Chapter 4 Network Layer Part 3: Routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March.
CS 3830 Day 29 Introduction 1-1. Announcements r Quiz 4 this Friday r Signup to demo prog4 (all group members must be present) r Written homework on chapter.
10-1 Last time □ Transitioning to IPv6 ♦ Tunneling ♦ Gateways □ Routing ♦ Graph abstraction ♦ Link-state routing Dijkstra's Algorithm ♦ Distance-vector.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 The slides are adaptation.
13 – Routing Algorithms Network Layer.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Distance Vector Algorithm Bellman-Ford Equation (dynamic programming) Define d x (y) := cost of least-cost path from x to y Then d x (y)
Network Layer4-1 Intra-AS Routing r Also known as Interior Gateway Protocols (IGP) r Most common Intra-AS routing protocols: m RIP: Routing Information.
TCOM 509 – Internet Protocols (TCP/IP) Lecture 06_a Routing Protocols: RIP, OSPF, BGP Instructor: Dr. Li-Chuan Chen Date: 10/06/2003 Based in part upon.
Introduction 1 Lecture 19 Network Layer (Routing Algorithms) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 20 Omar Meqdadi Department of Computer Science and Software Engineering University.
Internet Routing r Routing algorithms m Link state m Distance Vector m Hierarchical routing r Routing protocols m RIP m OSPF m BGP.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter4_3.
Transport Layer3-1 Network Layer Every man dies. Not every man really lives.
Network Layer4-1 Routing Algorithm Classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Advance Computer Networks Lecture#07 to 08 Instructor: Engr. Muhammad Mateen Yaqoob.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Network Layer4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol.
Routing in the Internet
14 – Inter/Intra-AS Routing
Homework 4 Out: Fri 2/24/2017 In: Fri 3/10/2017.
Chapter 4: Network Layer
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CPSC 335 Data Communication.
Chapter 4: Network Layer
Chapter 4 Network Layer A note on the use of these ppt slides:
Network Layer Introduction Datagram networks IP: Internet Protocol
Chapter 4: Network Layer
Overview The Internet (IP) Protocol Datagram format IP fragmentation
Chapter 4: Network Layer
Chapter 4: Network Layer
CMPE 252A : Computer Networks
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4 Network Layer A note on the use of these ppt slides:
Presentation transcript:

Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April The lecture notes are based on the lecture notes provided by Jim Kurose and Keith Ross with some modifications.

Network Layer4-2 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers segments to transport layer r network layer protocols in every host, router r router examines header fields in all IP datagrams passing through it application transport network data link physical application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical

Network Layer4-3 Two Key Network-Layer Functions r forwarding: move packets from router’s input to appropriate router output r routing: determine route taken by packets from source to dest. m routing algorithms analogy: r routing: process of planning trip from source to dest r forwarding: process of getting through single interchange

Network Layer value in arriving packet’s header routing algorithm local forwarding table header value output link Interplay between routing and forwarding

Network Layer4-5 Network service model Q: What service model for “channel” transporting datagrams from sender to receiver? Example services for individual datagrams: r guaranteed delivery r guaranteed delivery with less than 40 msec delay Example services for a flow of datagrams: r in-order datagram delivery r guaranteed minimum bandwidth to flow r restrictions on changes in inter- packet spacing

Network Layer4-6 Forwarding table Destination Address Range Link Interface through through through otherwise 3 4 billion possible entries

Network Layer4-7 Longest prefix matching Prefix Match Link Interface otherwise 3 DA: Examples DA: Which interface?

Network Layer4-8 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling conventions ICMP protocol error reporting router “signaling” Transport layer: TCP, UDP Link layer physical layer Network layer

Network Layer4-9 IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier header checksum time to live 32 bit source IP address IP protocol version number header length (bytes) max number remaining hops (decremented at each router) for fragmentation/ reassembly total datagram length (bytes) upper layer protocol to deliver payload to head. len type of service “type” of data flgs fragment offset upper layer 32 bit destination IP address Options (if any) E.g. timestamp, record route taken, specify list of routers to visit. how much overhead with TCP? r 20 bytes of TCP r 20 bytes of IP r = 40 bytes + app layer overhead

Network Layer4-10 IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host/router and physical link m router’s typically have multiple interfaces m host typically has one interface m IP addresses associated with each interface =

Network Layer4-11 Subnets r IP address: m subnet part (high order bits) m host part (low order bits) r What’s a subnet ? m device interfaces with same subnet part of IP address m can physically reach each other without intervening router network consisting of 3 subnets subnet

Network Layer4-12 IP addressing: CIDR CIDR: Classless InterDomain Routing m subnet portion of address of arbitrary length m address format: a.b.c.d/x, where x is # bits in subnet portion of address subnet part host part /23

Network Layer4-13 Hierarchical addressing: route aggregation “Send me anything with addresses beginning /20” / / /23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning /16” /23 Organization Hierarchical addressing allows efficient advertisement of routing information:

Network Layer4-14 Hierarchical addressing: more specific routes ISPs-R-Us has a more specific route to Organization 1 “Send me anything with addresses beginning /20” / / /23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning /16 or /23” /23 Organization

Network Layer value in arriving packet’s header routing algorithm local forwarding table header value output link Interplay between routing, forwarding

Network Layer4-16 u y x wv z Graph: G = (N,E) N = set of routers = { u, v, w, x, y, z } E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) } Graph abstraction Remark: Graph abstraction is useful in other network contexts Example: P2P, where N is set of peers and E is set of TCP connections

Network Layer4-17 Graph abstraction: costs u y x wv z c(x,x’) = cost of link (x,x’) - e.g., c(w,z) = 5 cost could always be 1, or inversely related to bandwidth, or inversely related to congestion Cost of path (x 1, x 2, x 3,…, x p ) = c(x 1,x 2 ) + c(x 2,x 3 ) + … + c(x p-1,x p ) Question: What’s the least-cost path between u and z ? Routing algorithm: algorithm that finds least-cost path

Network Layer4-18 Routing Algorithm classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link state” algorithms Decentralized: r router knows physically- connected neighbors, link costs to neighbors r iterative process of computation, exchange of info with neighbors r “distance vector” algorithms Static or dynamic? Static: r routes change slowly over time Dynamic: r routes change more quickly m periodic update m in response to link cost changes

Network Layer4-19 A Link-State Routing Algorithm Dijkstra’s algorithm r net topology, link costs known to all nodes m accomplished via “link state broadcast” m all nodes have same info r computes least cost paths from one node (‘source”) to all other nodes m gives forwarding table for that node r iterative: after k iterations, know least cost path to k dest.’s Notation:  c(x,y): link cost from node x to y; = ∞ if not direct neighbors  D(v): current value of cost of path from source to dest. v  p(v): predecessor node along path from source to v  N': set of nodes whose least cost path definitively known

Network Layer4-20 Dijsktra’s Algorithm 1 Initialization: 2 N' = {u} 3 for all nodes v 4 if v adjacent to u 5 then D(v) = c(u,v) 6 else D(v) = ∞ 7 8 Loop 9 find w not in N' such that D(w) is a minimum 10 add w to N' 11 update D(v) for all v adjacent to w and not in N' : 12 D(v) = min( D(v), D(w) + c(w,v) ) 13 /* new cost to v is either old cost to v or known 14 shortest path cost to w plus cost from w to v */ 15 until all nodes in N'

Network Layer4-21 Dijkstra’s algorithm: example Step N' u ux uxy uxyv uxyvw uxyvwz D(v),p(v) 2,u D(w),p(w) 5,u 4,x 3,y D(x),p(x) 1,u D(y),p(y) ∞ 2,x D(z),p(z) ∞ 4,y u y x wv z

Network Layer4-22 Dijkstra’s algorithm: example (2) u y x wv z Resulting shortest-path tree from u: v x y w z (u,v) (u,x) destination link Resulting forwarding table in u:

Network Layer4-23 Dijkstra’s algorithm, discussion Oscillations possible: r e.g., link cost = amount of carried traffic A D C B 1 1+e e 0 e A D C B 2+e e 1 A D C B 0 2+e 1+e A D C B 2+e 0 e 0 1+e 1 initially … recompute routing … recompute

Network Layer4-24 Distance Vector Algorithm Bellman-Ford Equation (dynamic programming) Define d x (y) := cost of least-cost path from x to y Then d x (y) = min {c(x,v) + d v (y) } where min is taken over all neighbors v of x v

Network Layer4-25 Bellman-Ford example u y x wv z Clearly, d v (z) = 5, d x (z) = 3, d w (z) = 3 d u (z) = min { c(u,v) + d v (z), c(u,x) + d x (z), c(u,w) + d w (z) } = min {2 + 5, 1 + 3, 5 + 3} = 4 Node that achieves minimum is next hop in shortest path ➜ forwarding table B-F equation says:

Network Layer4-26 Distance Vector Algorithm r D x (y) = estimate of least cost from x to y r Node x knows cost to each neighbor v: c(x,v) r Node x maintains distance vector D x = [D x (y): y є N ] r Node x also maintains its neighbors’ distance vectors m For each neighbor v, x maintains D v = [D v (y): y є N ]

Network Layer4-27 Distance vector algorithm (4) Basic idea: r From time-to-time, each node sends its own distance vector estimate to neighbors r Asynchronous r When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation: D x (y) ← min v {c(x,v) + D v (y)} for each node y ∊ N  Under minor, natural conditions, the estimate D x (y) converge to the actual least cost d x (y)

Network Layer4-28 Distance Vector Algorithm (5) Iterative, asynchronous: each local iteration caused by: r local link cost change r DV update message from neighbor Distributed: r each node notifies neighbors only when its DV changes m neighbors then notify their neighbors if necessary wait for (change in local link cost or msg from neighbor) recompute estimates if DV to any dest has changed, notify neighbors Each node:

Network Layer4-29 x y z x y z ∞∞∞ ∞∞∞ from cost to from x y z x y z 0 from cost to x y z x y z ∞∞ ∞∞∞ cost to x y z x y z ∞∞∞ 710 cost to ∞ ∞ ∞ ∞ time x z y node x table node y table node z table D x (y) = min{c(x,y) + D y (y), c(x,z) + D z (y)} = min{2+0, 7+1} = 2 D x (z) = min{c(x,y) + D y (z), c(x,z) + D z (z)} = min{2+1, 7+0} = 3 32

Network Layer4-30 x y z x y z ∞∞∞ ∞∞∞ from cost to from x y z x y z from cost to x y z x y z from cost to x y z x y z ∞∞ ∞∞∞ cost to x y z x y z from cost to x y z x y z from cost to x y z x y z from cost to x y z x y z from cost to x y z x y z ∞∞∞ 710 cost to ∞ ∞ ∞ ∞ time x z y node x table node y table node z table D x (y) = min{c(x,y) + D y (y), c(x,z) + D z (y)} = min{2+0, 7+1} = 2 D x (z) = min{c(x,y) + D y (z), c(x,z) + D z (z)} = min{2+1, 7+0} = 3

Network Layer4-31 For both (a) and (b): Initiall: y:side: (y->x 4, y->z 1) z:side: (z->x 5, z->y 1) x:size: (x->y 4, x->z 5) When y notes that 4->1, y updates y->x 1, y:side: (y->x 1, y->z 1), and y sends it to z and x. z notes the change and updates z:size: (z->x 2, z->y 1) and Z sends it to y and x, … When y notes that 4->60, y updates y->x 60, y:side: (y->x 6, y->z 1), and y sends it to z and x. z notes the change and updates z:size: (z->x 7, z->y 1) and Z sends it to y and x, … It will repeat 44 iterations until y notes that y-x should go y->z->x 51.

Network Layer4-32 Distance Vector: link cost changes Poisoned reverse: r If Z routes through Y to get to X : m Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to X via Z) r will this completely solve count to infinity problem? x z y 60

Network Layer4-33 Hierarchical Routing scale: with 200 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would swamp links! administrative autonomy r internet = network of networks r each network admin may want to control routing in its own network Our routing study thus far - idealization r all routers identical r network “flat” … not true in practice

Network Layer4-34 Hierarchical Routing r aggregate routers into regions, “autonomous systems” (AS) r routers in same AS run same routing protocol m “intra-AS” routing protocol m routers in different AS can run different intra- AS routing protocol Gateway router r Direct link to router in another AS

Network Layer4-35 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b Intra-AS Routing algorithm Inter-AS Routing algorithm Forwarding table 3c Interconnected ASes r forwarding table configured by both intra- and inter-AS routing algorithm m intra-AS sets entries for internal dests m inter-AS & intra-As sets entries for external dests

Network Layer4-36 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c Inter-AS tasks r suppose router in AS1 receives datagram destined outside of AS1: m router should forward packet to gateway router, but which one? AS1 must: 1. learn which dests are reachable through AS2, which through AS3 2. propagate this reachability info to all routers in AS1 Job of inter-AS routing!

Network Layer4-37 Example: Setting forwarding table in router 1d r suppose AS1 learns (via inter-AS protocol) that subnet x reachable via AS3 (gateway 1c) but not via AS2. r inter-AS protocol propagates reachability info to all internal routers. r router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c. m installs forwarding table entry (x,I) 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c x …

Network Layer4-38 Example: Choosing among multiple ASes r now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2. r to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x. m this is also job of inter-AS routing protocol! 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c x … …

Network Layer4-39 Learn from inter-AS protocol that subnet x is reachable via multiple gateways Use routing info from intra-AS protocol to determine costs of least-cost paths to each of the gateways Hot potato routing: Choose the gateway that has the smallest least cost Determine from forwarding table the interface I that leads to least-cost gateway. Enter (x,I) in forwarding table Example: Choosing among multiple ASes r now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2. r to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x. m this is also job of inter-AS routing protocol! r hot potato routing: send packet towards closest of two routers.

Network Layer4-40 Intra-AS Routing r also known as Interior Gateway Protocols (IGP) r most common Intra-AS routing protocols: m RIP: Routing Information Protocol m OSPF: Open Shortest Path First

Network Layer4-41 RIP advertisements r distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement) r each advertisement: list of up to 25 destination subnets within AS

Network Layer4-42 RIP: Example Destination Network Next Router Num. of hops to dest. wA2 yB2 zB7 x--1 ….…..... w xy z A C D B Routing/Forwarding table in D

Network Layer4-43 RIP: Example Destination Network Next Router Num. of hops to dest. wA2 yB2 zB A7 5 x--1 ….…..... Routing/Forwarding table in D w xy z A C D B Dest Next hops w - 1 x - 1 z C 4 …. …... Advertisement from A to D

Network Layer4-44 RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link declared dead m routes via neighbor invalidated m new advertisements sent to neighbors m neighbors in turn send out new advertisements (if tables changed) m link failure info quickly (?) propagates to entire net m poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

Network Layer4-45 OSPF (Open Shortest Path First) r “open”: publicly available r uses Link State algorithm m LS packet dissemination m topology map at each node m route computation using Dijkstra’s algorithm r OSPF advertisement carries one entry per neighbor router r advertisements disseminated to entire AS (via flooding) m carried in OSPF messages directly over IP (rather than TCP or UDP

Network Layer4-46 OSPF “advanced” features (not in RIP) r security: all OSPF messages authenticated (to prevent malicious intrusion) r multiple same-cost paths allowed (only one path in RIP) r For each link, multiple cost metrics for different TOS (e.g., satellite link cost set “low” for best effort; high for real time) r integrated uni- and multicast support: m Multicast OSPF (MOSPF) uses same topology data base as OSPF r hierarchical OSPF in large domains.

Network Layer4-47 Hierarchical OSPF

Network Layer4-48 Hierarchical OSPF r two-level hierarchy: local area, backbone. m Link-state advertisements only in area m each nodes has detailed area topology; only know direction (shortest path) to nets in other areas. r area border routers: “summarize” distances to nets in own area, advertise to other Area Border routers. r backbone routers: run OSPF routing limited to backbone. r boundary routers: connect to other AS’s.

Network Layer4-49 Internet inter-AS routing: BGP r BGP (Border Gateway Protocol): the de facto standard r BGP provides each AS a means to: 1. Obtain subnet reachability information from neighboring ASs. 2. Propagate reachability information to all AS- internal routers. 3. Determine “good” routes to subnets based on reachability information and policy. r allows subnet to advertise its existence to rest of Internet: “I am here”

Network Layer4-50 BGP basics r pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: BGP sessions m BGP sessions need not correspond to physical links. r when AS2 advertises a prefix to AS1: m AS2 promises it will forward datagrams towards that prefix. m AS2 can aggregate prefixes in its advertisement 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c eBGP session iBGP session

Network Layer4-51 Distributing reachability info r using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1. m 1c can then use iBGP do distribute new prefix info to all routers in AS1 m 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session r when router learns of new prefix, it creates entry for prefix in its forwarding table. 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c eBGP session iBGP session

Network Layer4-52 BGP routing policy r A,B,C are provider networks r X,W,Y are customer (of provider networks) r X is dual-homed: attached to two networks m X does not want to route from B via X to C m.. so X will not advertise to B a route to C A B C W X Y legend : customer network: provider network

Network Layer4-53 BGP routing policy (2) r A advertises path AW to B r B advertises path BAW to X r Should B advertise path BAW to C? m No way! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers m B wants to force C to route to w via A m B wants to route only to/from its customers! A B C W X Y legend : customer network: provider network

Network Layer4-54 Why different Intra- and Inter-AS routing ? Policy: r Inter-AS: admin wants control over how its traffic routed, who routes through its net. r Intra-AS: single admin, so no policy decisions needed Scale: r hierarchical routing saves table size, reduced update traffic Performance: r Intra-AS: can focus on performance r Inter-AS: policy may dominate over performance