Orbital verification of the performance of Suzaku XIS K. Hayashida, K. Torii, M. Namiki, N. Anabuki, S. Katsuda, N. Tawa, T. Miyauchi, H. Tsunemi, Osaka Univ. (Japan); H. Matsumoto, T. G. Tsuru, H. Nakajima, H. Yamaguchi, K. Koyama, Kyoto Univ. (Japan); T. Dotani, M. Ozaki, H. Murakami, H. Katayama, Japan Aerospace Exploration Agency (Japan); S. Kitamoto, Rikkyo Univ. (Japan); H. Awaki, Ehime Univ. (Japan); T. Kohmura, Kogakuin Univ. (Japan); B. LaMarr, E. Miller, S. E. Kissel, M. W. Bautz, R. F. Foster, Massachusetts Institute of Technology
X-ray Imaging Spectrometer (XIS) X-ray CCD Cameras onboard Suzaku X-ray CCD Cameras onboard Suzaku 3 Cameras (XIS0,XIS2,XIS3) contains FI-CCD 、1 Camera ( XIS1) has BI-CCD 3 Cameras (XIS0,XIS2,XIS3) contains FI-CCD 、1 Camera ( XIS1) has BI-CCD CCD Operation Temp = -90 ℃ CCD Operation Temp = -90 ℃ 1024x1024pixels 1024x1024pixels FOV18’x18’ FOV18’x18’ Energy Range keV Energy Range keV
CCD &ペルチェ素子 3段ペルチェ1素子 CCD 温度- ℃ Δ ℃)を 3.8W で達成 MIT-LL CCID41 CCD with Charge Injection Au coated Cu Heatsink Alumina Substrate Torlon Standoffs Flexprint MIT-LL CCID41 Frame Transfer 1024x1024pixels,24 mx24 m pixel size 4 readout nodes/CCD Readout noise time=8sec Depletion Region ~70 m for FI ~45 m for BI 電極層 空乏層 FI BI X-ray
Calibration Task Share ComponentsLocation X-ray Source QE reference Chip level CSR/MIT Fluorescent X-rays (C,O,F,Al,Si,P,Ti,Mn,Cu) ACIS chips calibrated at BESSY Camera without OBF +FM AE Osaka Grating Spectrometer keV Polypro-window Gas PC & XIS- EU Kyoto Fluorescent X-rays (Al,Cl,Ti,Mn,Fe,Zn,Se) Window-less SSD OBF Synchrotron Facility Synchrotron X-rays + monochrometer (Transmission measurement with PIN diode) Camera onboard the satellite ISAS/JAXA55Fe
Detector Chamber Manson Soft X-ray Generator Hetrick Spectrometer Calibration Facility in the Osaka Clean Room
Initial Operation and Current Status 2005/7/10 Suzaku Launch 2005/7/10 Suzaku Launch 2005/7/25 XIS System Power On 2005/7/25 XIS System Power On 2005/8/12-8/13 XIS Door Open = First Light 2005/8/12-8/13 XIS Door Open = First Light 2006/05/31 More than 100 objects were observed. 4 CCD Cameras are functioning properly. 2006/05/31 More than 100 objects were observed. 4 CCD Cameras are functioning properly. JAXA press release E
~0.5keV incident BI Small tail component!
Chemisorption Process Burke et al., 2004, IEEE transactions on Nuclear Science, 51, p.2322
すざく XIS 7/100 パス非可視で電磁バルブの開閉。 7/100 パス非可視で電磁バルブの開閉。 7/11 電磁バルブの開(4パス)閉(5パス)。 7/11 電磁バルブの開(4パス)閉(5パス)。 7/21 温度を上げてバルブ開。 7/21 温度を上げてバルブ開。 7/24MPU, PPU 立ち上げ。 7/24MPU, PPU 立ち上げ。 7/25AE 立ち上げ。データ取得開始( frame mode ) 7/25AE 立ち上げ。データ取得開始( frame mode ) 7/26CCD 設定温度: −60 ℃ 7/26CCD 設定温度: −60 ℃ 7/27CCD 設定温度: −90 ℃(ノミナル動作温度) 7/27CCD 設定温度: −90 ℃(ノミナル動作温度) 8/11CCD 設定温度: −80 ℃。 HP 設定温度: −35 ℃。 8/11CCD 設定温度: −80 ℃。 HP 設定温度: −35 ℃。 8/12XIS-3 ドア開。 8/12XIS-3 ドア開。 8/13XIS-2,1,0 ドア開。 8/13XIS-2,1,0 ドア開。 Better Energy Resolution at Low Energies
Suzaku Team Compiled by Fujimoto et al.
Orbital Calibration Items Energy Scale –Tracking evolution of Charge Transfer Inefficiency (CTI) –Verification of Energy Scale in orbit Quantum Efficiency –Verification of QE measured on ground –Monitoring possible change of QE in time Background Energy Resolution and Response Profile Updating Calibration Data Base continuously. Software tools are also required to be updated.
Ex-PHA relation ( Calibration on ground ) Si K edge (E=1839 eV) Residual to straight line fit Residual to broken line fit +10eV -10eV
55 Fe Cal-Source→ Gain monitor Gain Decrease ~2%/year Gain Decrease ~2%/year Energy Resolution 140eV ->170~180eV Energy Resolution 140eV ->170~180eV CTI increase induced by orbital radiation damage of the CCD PH [ch] counts Mn-K 5.9keV Mn-K 6.5keV Peak ch of Mn-K (Normalized to the ch at 1 st ligt) Energy Resolution FWHM @ 5.9keV
Determination CTI parameters included in rev0.6 data Whole Area cal src data (8/11) Q = PHA(ACTY=0) Corner cal src data (8/15 ~ 11/20) T Q’(T) = PHA(ACTY=896, T) Q’ = Q(1-CTI) N → CTI = (Q- Q’) / Q / N Q : Initial charge Q’ : Readout charge N : Number of P transfer CTI = PHA(Y=0) – PHA (Y=896, T) PHA(Y=0)×896 CTI(Seg1) = CTI(Seg 2) = [CTI(Seg0) + CTI(Seg3)] / 2 CTI = CTI_CONST + CTI_NORM×(PHAS) CTI_POW In rev0.6… CTI_POW = -0.5 CTI_CONST = 0
Energy Scale Correction (Charge Trail & CTI ) ACTY line center energy [keV] XIS0, XIS1, XIS2, XIS3 ACTY line center energy [keV] XIS0, XIS1, XIS2, XIS3 broken line : expected energy Rev0.6 Correction as a function of time, location, assuming CTI energy dependence Ex^-0.5 CTI is constant at ACTY=0 Cyg LoopGalactic Center Sgr C <2% at lower energy, <1% at higher energy side. Revised correction (rev0.7 processing) is almost ready now. 1% broken line : expected energy
QE + XRT effective area verification with Crab By S.Okada et al., XRT team
QE (low energy part ) Calibration RXJ /10/24-26 Rev0.3 data -10eV offset a: Based Cal on the Ground b: a x excess0.15 mC c: Dead Layer =Design Value d: c x excess0.15 mC C-K edge ~0.3keV 63.5eV blackbody >0.3keV 1/3-1/2 of expected value Isolated NS
E Repeated Observation →Degradation of QE E0102: SNR in SMC, bright in soft X-ray lines excellent calibrator for low-E gain, QE changes model thermal bremss + 24 Gaussian emission lines Galactic + SMC absorption pure C absorption from contaminant (varabs) gain shift -5 eV ~ -15 ev r 2 ~ 1.6 (FIs) to 2.5 (BI) OVIII NeIX NeX MgXI OVII
PKS XIS1(BI) XIS3(FI) NH(Gal)*Pow NH(Gal)*N_C*Pow NH(Gal)*N_C*N_O*Pow NH(Gal)=1.65e20cm~-2
吸収物質は炭素主体 XIS1(BI)XIS3(FI) N_C(1e18cm^-2)2.4+/ / N_O(1e17cm^-2)1.4+/ /-0.55 N_O/N_C0.059+/ / Cf DEHP(C24H38O4) N_O/N_C=1/6=0.17
吸収物質(炭素)量の変化 change in effective C column: chipslopeintercept (10 16 cm -2 /day) XIS01.6 ± ±4.0 XIS12.7 ± ±15 XIS23.1 ± ±14 XIS34.1 ± ±50. 経験式を導出 XIS2,XIS3 に関して 2006 年の観測では吸着率が減少している (?) SMC N H uncertainty systematic error ±0.02 m independent of epoch
地球大気からの蛍光X線 When the telescope is looking at the shining Earth or its atmosphere, fluorescence lines of the Earth atmosphere (N-K, O-K) by Solar X-rays are contaminated in the observed spectra. Intensity and line ratio depends on the elevation angle from the Earth rim and the Solar activity. DAY EARTH 0 < DYE_ELV < 5 5 < DYE_ELV < < DYE_ELV < < DYE_ELV < 30 窒素 (0.39keV) 酸素 (0.52keV)
地球大気からの窒素蛍光X線マップ吸収物質厚みの非一様性 N-K line (XIS1 BI) Day Earth 0 < DYE_ELV < 5 5 < DYE_ELV < < DYE_ELV < < DYE_ELV < < DYE_ELV < Color code is adjusted for each map 周辺部の吸収物質厚みは中央部の約 1/2 × 望遠鏡 (XRT) の熱遮断フィルター ○ XIS カメラの可視光遮断フィルタ (OBF) (OBF 中央部は周辺部に比べて 7-8 ℃温度が低い) △ CCD 表面 衛星内部に発生した有機ガスが OBF 表面に吸着した?
Low background level is confirmed →Efficient for low surface brightness
Summary 4 XIS CCD cameras are functioning properly 4 XIS CCD cameras are functioning properly More than 100 targets were observed already. More than 100 targets were observed already. Gain and energy resolution are monitored with built-in calibration source. CTI correction to compensate radiation damage induced gain decrease (~2%/year) is introduced. Gain and energy resolution are monitored with built-in calibration source. CTI correction to compensate radiation damage induced gain decrease (~2%/year) is introduced. Energy scale error in rev0.6 processing is 1%-2%. Rev0.7 processing with higher accuracy is now almost ready to use. Energy scale error in rev0.6 processing is 1%-2%. Rev0.7 processing with higher accuracy is now almost ready to use. QE at high energy is almost as expected (error ~10%) from Crab data. QE at high energy is almost as expected (error ~10%) from Crab data. Low energy QE suffers significant degradation. Low energy QE suffers significant degradation. Possibly C-dominant material put on Optical Blocking Filter (OBF) Possibly C-dominant material put on Optical Blocking Filter (OBF) (Details will be presented in a separate paper) (Details will be presented in a separate paper) Activity to update calibration and their tool is under going. Activity to update calibration and their tool is under going.