Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.

Slides:



Advertisements
Similar presentations
Sensitivity Studies (1): Motivation Theoretical background. Sensitivity of the Lorenz model. Thomas Jung ECMWF, Reading, UK
Advertisements

Introduction to Data Assimilation NCEO Data-assimilation training days 5-7 July 2010 Peter Jan van Leeuwen Data Assimilation Research Center (DARC) University.
Assimilation Algorithms: Tangent Linear and Adjoint models Yannick Trémolet ECMWF Data Assimilation Training Course March 2006.
The Inverse Regional Ocean Modeling System:
Setup of 4D VAR inverse modelling system for atmospheric CH 4 using the TM5 adjoint model Peter Bergamaschi Climate Change Unit Institute for Environment.
Improving Understanding of Global and Regional Carbon Dioxide Flux Variability through Assimilation of in Situ and Remote Sensing Data in a Geostatistical.
Tropical vs. extratropical terrestrial CO 2 uptake and implications for carbon-climate feedbacks Outline: How we track the fate of anthropogenic CO 2 Historic.
Aerosol radiative effects from satellites Gareth Thomas Nicky Chalmers, Caroline Poulsen, Ellie Highwood, Don Grainger Gareth Thomas - NCEO/CEOI-ST Joint.
GEOS-CHEM adjoint development using TAF
Integrating satellite observations for assessing air quality over North America with GEOS-Chem Mark Parrington, Dylan Jones University of Toronto
Estimating parameters in inversions for regional carbon fluxes Nir Y Krakauer 1*, Tapio Schneider 1, James T Randerson 2 1. California Institute of Technology.
Estimation of daily CO 2 fluxes over Europe by inversion of atmospheric continuous data C. Carouge and P. Peylin ; P. Bousquet ; P. Ciais ; P. Rayner Laboratoire.
Data Assimilation in the NCEO (National Centre for Earth Observation) Peter Jan van Leeuwen Data-Assimilation Research Centre DARC University of Reading.
Prabir K. Patra, Shamil Maksyutov, A. Ito and TransCom-3 modellers Jena; 13 May 2003 An evaluation of an ecosystem model for studying CO2 seasonal cycle.
Evaluating the Impact of the Atmospheric “ Chemical Pump ” on CO 2 Inverse Analyses P. Suntharalingam GEOS-CHEM Meeting, April 4-6, 2005 Acknowledgements.
A global Carbon Cycle Data Assimilation System (CCDAS) to infer atmosphere- biosphere CO 2 exchanges and their uncertainties Marko Scholze 1, Peter Rayner.
Evaluating the Role of the CO 2 Source from CO Oxidation P. Suntharalingam Harvard University TRANSCOM Meeting, Tsukuba June 14-18, 2004 Collaborators.
Inversion of continuous data over Europe : a pseudo-data analysis. C. Carouge and P. Peylin ; P. Bousquet ; P. Ciais ; P. Rayner Laboratoire des Sciences.
Maximum Liklihood Ensemble Filter (MLEF) Dusanka Zupanski, Kevin Robert Gurney, Scott Denning, Milia Zupanski, Ravi Lokupitiya June, 2005 TransCom Meeting,
Numerical Weather Prediction Division The usage of the ATOVS data in the Korea Meteorological Administration (KMA) Sang-Won Joo Korea Meteorological Administration.
Climate and the Carbon Cycle Gretchen Keppel-Aleks California Institute of Technology 16 October 2010.
An Assimilating Tidal Model for the Bering Sea Mike Foreman, Josef Cherniawsky, Patrick Cummins Institute of Ocean Sciences, Sidney BC, Canada Outline:
A global Carbon Cycle Data Assimilation System (CCDAS) and its link to CAMELS Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 3, Thomas Kaminski 4, Ralf.
The Inverse Regional Ocean Modeling System: Development and Application to Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E., Moore, A., H.
Page 1© Crown copyright WP4 Development of a System for Carbon Cycle Data Assimilation Richard Betts.
Results from the Carbon Cycle Data Assimilation System (CCDAS) 3 FastOpt 4 2 Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1 Heinrich Widmann 3, Thomas.
Carbon, soil moisture and fAPAR assimilation Wolfgang Knorr Max-Planck Institute of Biogeochemistry Jena, Germany 1 Acknowledgments: Nadine Gobron 2, Marko.
FastOpt A road map to an adjoint analysis of the summer 2007 low in Arctic sea-ice area‏ Frank Kauker, Thomas Kaminski, Michael Karcher, Ralf Giering,
Translation to the New TCO Panel Beverly Law Prof. Global Change Forest Science Science Chair, AmeriFlux Network Oregon State University.
Regional Inversion of continuous atmospheric CO 2 measurements A first attempt ! P., P., P., P., and P. Philippe Peylin, Peter Rayner, Philippe Bousquet,
A Global Carbon Cycle Data Assimilation System (CCDAS) to Infer Atmosphere- Biosphere CO2 Exchanges and Their Uncertainties Marko Scholze1, Peter Rayner2,
1 CAMELS Carbon Assimilation and Modelling of the European Land Surface an EU Framework V Project (Part of the CarboEurope Cluster) CAMELS.
CO 2 and O 2 Concentration Measurements Britton Stephens, NCAR/ATD Peter Bakwin, NOAA/CMDL Global carbon cycle Regional scale CO 2 measurements Potential.
Assimilating chemical compound with a regional chemical model Chu-Chun Chang 1, Shu-Chih Yang 1, Mao-Chang Liang 2, ShuWei Hsu 1, Yu-Heng Tseng 3 and Ji-Sung.
Integration of biosphere and atmosphere observations Yingping Wang 1, Gabriel Abramowitz 1, Rachel Law 1, Bernard Pak 1, Cathy Trudinger 1, Ian Enting.
Research Vignette: The TransCom3 Time-Dependent Global CO 2 Flux Inversion … and More David F. Baker NCAR 12 July 2007 David F. Baker NCAR 12 July 2007.
Satellite-based inversion of NOx emissions using the adjoint of CMAQ Amir Hakami, John H. Seinfeld (Caltech) Qinbin Li (JPL) Daewon W. Byun, Violeta Coarfa,
# # # # An Application of Maximum Likelihood Ensemble Filter (MLEF) to Carbon Problems Ravindra Lokupitiya 1, Scott Denning 1, Dusanka Zupanski 2, Kevin.
Multivariate Data Assimilation of Carbon Cycle Using Local Ensemble Transform Kalman Filter 1 Ji-Sun Kang, 1 Eugenia Kalnay, 2 Junjie Liu, 2 Inez Fung,
Inferring terrestrial CO 2 fluxes from a global-scale Carbon Cycle Data Assimilation System (CCDAS) Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1,
Quantitative network design for biosphere model process parameters E. Koffi 1, P. Rayner 1, T. Kaminski 2, M. Scholze 3, M. Voßbeck 2, and R. Giering 2.
CAMELS CCDAS A Bayesian approach and Metropolis Monte Carlo method to estimate parameters and uncertainties in ecosystem models from eddy-covariance data.
Using data assimilation to improve estimates of C cycling Mathew Williams School of GeoScience, University of Edinburgh.
FastOpt Quantitative Design of Observational Networks M. Scholze, R. Giering, T. Kaminski, E. Koffi P. Rayner, and M. Voßbeck Future GHG observation WS,
July 11, 2006Bayesian Inference and Maximum Entropy Probing the covariance matrix Kenneth M. Hanson T-16, Nuclear Physics; Theoretical Division Los.
Dublin - 18 June 2010 –CEOs LPV Phenology1 MERIS FAPAR: Towards Phenology Products Nadine Gobron, Jan Musial, Michel Verstraete and Wolfgang Knorr.
1 CAMELS CAMELS PROJECT OVERVIEW Motivation for CAMELS Deliverables Products Structure Peter Cox, Hadley Centre, Met Office.
Climate–Carbon Modelling, Assimilation & Prediction Wolfgang Knorr, QUEST NCEO/Carbon Fusion Sheffield, 29 February 2008.
Anthropogenic Carbon Dioxide Sources 2010: 1)Combustion of Fossil Fuels: Fossil Fuel + Oxygen = Carbon Dioxide + Water Vapour + Heat 3)Deforestation 2)Cement.
CarboEurope: The Big Research Lines Annette Freibauer Ivan Janssens.
Derivative-based uncertainty quantification in climate modeling P. Heimbach 1, D. Goldberg 2, C. Hill 1, C. Jackson 3, N. Petra 3, S. Price 4, G. Stadler.
Data assimilation in Marko Scholze. Strictly speaking, there are so far no DA activities in QUEST, but CCDAS (as part of core team activities) CPDAS and.
Prepared by Dusanka Zupanski and …… Maximum Likelihood Ensemble Filter: application to carbon problems.
FastOpt CAMELS A prototype Global Carbon Cycle Data Assimilation System (CCDAS) Wolfgang Knorr 1, Marko Scholze 2, Peter Rayner 3,Thomas Kaminski 4, Ralf.
Inverse Modeling of Surface Carbon Fluxes Please read Peters et al (2007) and Explore the CarbonTracker website.
Geogg124: Data assimilation P. Lewis. What is Data Assimilation? Optimal merging of models and data Models Expression of current understanding about process.
Earth Observation Data and Carbon Cycle Modelling Marko Scholze QUEST, Department of Earth Sciences University of Bristol GAIM/AIMES Task Force Meeting,
FastOpt A prototype Carbon Cycle Data Assimilation System (CCDAS) Inferring interannual variations of vegetation- atmosphere CO 2 fluxes Marko Scholze.
Anders Nielsen Technical University of Denmark, DTU-Aqua Mark Maunder Inter-American Tropical Tuna Commission An Introduction.
1 Co-ordinator: Detlef Schulze (MPI for Biogeochemistry) Component Leaders: Riccardo Valentini, Philippe Ciais, Han Dolman, Martin Heimann, John Grace.
Carbon Cycle Data Assimilation with a Variational Approach (“4-D Var”) David Baker CGD/TSS with Scott Doney, Dave Schimel, Britt Stephens, and Roger Dargaville.
Marc Kennedy, Tony O’Hagan, Clive Anderson,
The Carbon Cycle Data Assimilation System (CCDAS)
CO2 sources and sinks in China as seen from the global atmosphere
Gleb Panteleev (IARC) Max Yaremchuk, (NRL), Dmitri Nechaev (USM)
Adjoint modeling and applications
HIPPO1-3 Large-Scale CO2 Gradients
The global carbon cycle for the 1990s, showing the main annual fluxes in GtC yr–1: pre-industrial ‘natural’ fluxes in black and ‘anthropogenic’ fluxes.
The global carbon cycle for the 1990s, showing the main annual fluxes in GtC yr–1: pre-industrial ‘natural’ fluxes in black and ‘anthropogenic’ fluxes.
CO2 and O2 Concentration Measurements
Presentation transcript:

Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1, Thomas Kaminski 3, Ralf Giering 3 & Heinrich Widmann 1 European Geosciences Union, Nice, 27 th April 2004 FastOpt 12 3

Overview CCDAS set-up Calculation and propagation of uncertainties Data fit Global results Summary

Carbon Cycle Data Assimilation System (CCDAS) set-up 2-stage-assimilation: 1.AVHRR data (Knorr, 2000) 2.Atm. CO 2 data Background fluxes: 1.Fossil emissions (Marland et al., 2001 und Andres et al., 1996) 2.Ocean CO 2 (Takahashi et al., 1999 und Le Quéré et al., 2000) 3.Land-use (Houghton et al., 1990) Transport Model TM2 (Heimann, 1995)

Calibration Step Flow of information in CCDAS. Oval boxes represent the various quantities. Rectangular boxes denote mappings between these fields.

Prognostic Step Oval boxes represent the various quantities. Rectangular boxes denote mappings between these fields.

Methodology Minimize cost function such as (Bayesian form): where - is a model mapping parameters to observable quantities - is a set of observations - error covariance matrix  need of (adjoint of the model)

Calculation of uncertainties Error covariance of parameters = inverse Hessian Covariance (uncertainties) of prognostic quantities

Figure from Tarantola, 1987 Gradient Method 1 st derivative (gradient) of J (p) to model parameters p: yields direction of steepest descent. cost function J (p) Model parameter space (p) 2 nd derivative (Hessian) of J (p): yields curvature of J. Approximates covariance of parameters.

Data fit

Global Growth Rate Calculated as: observed growth rate optimised modeled growth rate Atmospheric CO 2 growth rate

Parameters I 3 PFT specific parameters (J max, J max /V max and  ) 18 global parameters 57 parameters in all plus 1 initial value (offset) ParamInitialPredictedPrior unc. (%)Unc. Reduction (%) fautleaf c-cost Q 10 (slow)  (fast)  (TrEv)  (TrDec)  (TmpDec)  (EvCn)  (DecCn)  (C4Gr)  (Crop)

Parameters II Relative Error Reduction

Carbon Balance latitude N *from Valentini et al. (2000) and others Euroflux (1-26) and other eddy covariance sites* net carbon flux gC / (m 2 year)

Posterior uncertainty in net flux Uncertainty in net carbon flux gC / (m 2 year)

Summary CCDAS with 58 parameters can fit 20 years of CO 2 concentration data. Significant reduction of uncertainty for ~15 parameters. A tool to test model with uncertain parameters and to deliver a posterior uncertainties on parameters and prognostics. Model is developed further within the system  a low resolution version of the biosphere model is available (~20 times faster). Adjoint, tangent linear and Hessian code is derived by automatic differentiation (TAF)  extremely easy update of derivative code for improved model versions.