Digital Signal Processing

Slides:



Advertisements
Similar presentations
2/17/2007DSP Course-IUST-Spring Semester 1 Digital Signal Processing Electrical Engineering Department Iran University of Science & Tech.
Advertisements

Chapter 8: The Discrete Fourier Transform
Autumn Analog and Digital Communications Autumn
PROPERTIES OF FOURIER REPRESENTATIONS
A-A+ B-B+ C-C+ F. Week 11. Chapter 10 Fourier Transforms 1.The Four Fourier transforms CTFT DTFT FS DFT/S 2.Relationships 3.Important properties.
Discrete-Time Fourier Methods
Lecture #07 Z-Transform meiling chen signals & systems.
Signals and Systems Discrete Time Fourier Series.
Systems: Definition Filter
Goals For This Class Quickly review of the main results from last class Convolution and Cross-correlation Discrete Fourier Analysis: Important Considerations.
Copyright © Shi Ping CUC Chapter 3 Discrete Fourier Transform Review Features in common We need a numerically computable transform, that is Discrete.
Fourier representation for discrete-time signals And Sampling Theorem
Discrete-Time and System (A Review)
ELEN 5346/4304 DSP and Filter Design Fall Lecture 4: Frequency domain representation, DTFT, IDTFT, DFT, IDFT Instructor: Dr. Gleb V. Tcheslavski.
1 7.1 Discrete Fourier Transform (DFT) 7.2 DFT Properties 7.3 Cyclic Convolution 7.4 Linear Convolution via DFT Chapter 7 Discrete Fourier Transform Section.
Signals and Systems Jamshid Shanbehzadeh.
CHAPTER 3 Discrete-Time Signals in the Transform-Domain
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Linearity Time Shift and Time Reversal Multiplication Integration.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Introduction to the IEEE Derivation of the DFT Relationship to DTFT DFT of Truncated.
8.1 representation of periodic sequences:the discrete fourier series 8.2 the fourier transform of periodic signals 8.3 properties of the discrete fourier.
1 The Fourier Series for Discrete- Time Signals Suppose that we are given a periodic sequence with period N. The Fourier series representation for x[n]
(Lecture #08)1 Digital Signal Processing Lecture# 8 Chapter 5.
1 Review of Continuous-Time Fourier Series. 2 Example 3.5 T/2 T1T1 -T/2 -T 1 This periodic signal x(t) repeats every T seconds. x(t)=1, for |t|
Discrete Fourier Transform Prof. Siripong Potisuk.
Signal and Systems Prof. H. Sameti Chapter 5: The Discrete Time Fourier Transform Examples of the DT Fourier Transform Properties of the DT Fourier Transform.
The Discrete Fourier Transform 主講人:虞台文. Content Introduction Representation of Periodic Sequences – DFS (Discrete Fourier Series) Properties of DFS The.
EE104: Lecture 5 Outline Review of Last Lecture Introduction to Fourier Transforms Fourier Transform from Fourier Series Fourier Transform Pair and Signal.
Chapter 4 Fourier transform Prepared by Dr. Taha MAhdy.
Zhongguo Liu_Biomedical Engineering_Shandong Univ. Chapter 8 The Discrete Fourier Transform Zhongguo Liu Biomedical Engineering School of Control.
Digital Signal Processing Chapter 3 Discrete transforms.
Fourier Analysis of Discrete Time Signals
2/17/2007DSP Course-IUST-Spring Semester 1 Digital Signal Processing Electrical Engineering Department Iran University of Science & Tech.
Lecture 17: The Discrete Fourier Series Instructor: Dr. Ghazi Al Sukkar Dept. of Electrical Engineering The University of Jordan
Lecture 6: DFT XILIANG LUO 2014/10. Periodic Sequence  Discrete Fourier Series For a sequence with period N, we only need N DFS coefs.
Chapter 5 Finite-Length Discrete Transform
5.0 Discrete-time Fourier Transform 5.1 Discrete-time Fourier Transform Representation for discrete-time signals Chapters 3, 4, 5 Chap 3 Periodic Fourier.
Dan Ellis 1 ELEN E4810: Digital Signal Processing Topic 3: Fourier domain 1.The Fourier domain 2.Discrete-Time Fourier Transform (DTFT) 3.Discrete.
2/17/2007DSP Course-IUST-Spring Semester 1 Digital Signal Processing Electrical Engineering Department Iran University of Science & Tech.
Linear filtering based on the DFT
2/17/2007DSP Course-IUST-Spring Semester 1 Digital Signal Processing Electrical Engineering Department Iran University of Science & Tech.
DTFT continue (c.f. Shenoi, 2006)  We have introduced DTFT and showed some of its properties. We will investigate them in more detail by showing the associated.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Derivation of the DFT Relationship to DTFT DFT of Truncated Signals.
2/17/2007DSP Course-IUST-Spring Semester 1 Digital Signal Processing Electrical Engineering Department Iran University of Science & Tech.
Eeng360 1 Chapter 2 Fourier Transform and Spectra Topics:  Fourier transform (FT) of a waveform  Properties of Fourier Transforms  Parseval’s Theorem.
بسم الله الرحمن الرحيم Digital Signal Processing Lecture 3 Review of Discerete time Fourier Transform (DTFT) University of Khartoum Department of Electrical.
Fourier Transform and Spectra
Dr. Michael Nasief Digital Signal Processing Lec 7 1.
Husheng Li, UTK-EECS, Fall The specification of filter is usually given by the tolerance scheme.  Discrete Fourier Transform (DFT) has both discrete.
2/17/2007DSP Course-IUST-Spring Semester 1 Digital Signal Processing Electrical Engineering Department Iran University of Science & Tech.
بسم الله الرحمن الرحيم Lecture (12) Dr. Iman Abuel Maaly The Discrete Fourier Transform Dr. Iman Abuel Maaly University of Khartoum Department of Electrical.
 Carrier signal is strong and stable sinusoidal signal x(t) = A cos(  c t +  )  Carrier transports information (audio, video, text, ) across.
Chapter 8. The Discrete Fourier Transform
Review of DSP.
DIGITAL SIGNAL PROCESSING ELECTRONICS
CE Digital Signal Processing Fall Discrete-time Fourier Transform
Digital Signal Processing Lecture 4 DTFT
The Discrete Fourier Transform
4.1 DFT In practice the Fourier components of data are obtained by digital computation rather than by analog processing. The analog values have to be.
Chapter 8 The Discrete Fourier Transform
Sampling the Fourier Transform
Lecture 17 DFT: Discrete Fourier Transform
Chapter 2 Discrete Fourier Transform (DFT)
Signals & Systems (CNET - 221) Chapter-5 Fourier Transform
Chapter 8 The Discrete Fourier Transform
Chapter 8 The Discrete Fourier Transform
Electrical Communication Systems ECE Spring 2019
Review of DSP.
CE Digital Signal Processing Fall Discrete Fourier Transform (DFT)
Electrical Communications Systems ECE
Presentation transcript:

Digital Signal Processing Electrical Engineering Department Iran University of Science & Tech. 2/17/2007 DSP Course-IUST-Spring Semester

Digital Signal Processing Topic 3: Fourier domain 4/24/2017 Digital Signal Processing Topic 3: Fourier domain 1. The Fourier domain 2. Discrete-Time Fourier Transform (DTFT) 3. Discrete Fourier Transform (DFT) 4. Convolution with the DFT 2/17/2007 DSP Course-IUST-Spring Semester DSP Course Spring Semester Dr. Rezai-Rad

DSP Course-IUST-Spring Semester 1. The Fourier Transform 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Fourier Series 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Fourier domain 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Fourier analysis 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Fourier analysis 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Fourier analysis 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester sinc 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Fourier Analysis 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Fourier Transform 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Fourier Transform 2/17/2007 DSP Course-IUST-Spring Semester

Fourier Transform of a sine 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Fourier Transforms 2/17/2007 DSP Course-IUST-Spring Semester

2. Discrete Time FT (DTFT) 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DTFT 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Periodicity of DFT 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Inverse DTFT (IDTFT) 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester IDTFT 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester sinc again 2/17/2007 DSP Course-IUST-Spring Semester

DTFTs of simple sequences 2/17/2007 DSP Course-IUST-Spring Semester

DTFTs of simple sequences 2/17/2007 DSP Course-IUST-Spring Semester

DTFTs of simple sequences 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DTFT properties 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DTFT example 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DTFT symmetry 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DTFT of real x[n] 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DTFT and convolution 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Convolution with DTFT 2/17/2007 DSP Course-IUST-Spring Semester

DTFT convolution example 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DTFT modulation 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Parseval’s relation 2/17/2007 DSP Course-IUST-Spring Semester

Energy density spectrum 2/17/2007 DSP Course-IUST-Spring Semester

EDS and autocorrelation 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester 3. Discrete FT (DFT) 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DFT and IDFT 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester IDFT 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DFT examples 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DFT: Matrix form 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Matrix IDFT 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DFT and DTFT 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DFT and MATLAB 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DTFT from DFT 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Periodic sinc 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Periodic sinc 2/17/2007 DSP Course-IUST-Spring Semester

DFT from overlength DTFT 2/17/2007 DSP Course-IUST-Spring Semester

DFT from overlength DTFT 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DFT from DTFT example 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester DFT from DTFT example 2/17/2007 DSP Course-IUST-Spring Semester

Properties: Circular time shift 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Circular time shift 2/17/2007 DSP Course-IUST-Spring Semester

Circular time reversal 2/17/2007 DSP Course-IUST-Spring Semester

4. Convolution with the DFT 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Circular convolution 2/17/2007 DSP Course-IUST-Spring Semester

Circular convolution example 2/17/2007 DSP Course-IUST-Spring Semester

DSP Course-IUST-Spring Semester Duality 2/17/2007 DSP Course-IUST-Spring Semester

DFT properties summary 2/17/2007 DSP Course-IUST-Spring Semester

Linear convolution w/ the DFT 2/17/2007 DSP Course-IUST-Spring Semester

Linear convolution w/ the DFT 2/17/2007 DSP Course-IUST-Spring Semester

Overlap-Add convolution 2/17/2007 DSP Course-IUST-Spring Semester

Overlap-Add convolution 2/17/2007 DSP Course-IUST-Spring Semester