HAZARDOUS WASTE  Hazardous waste: is any discarded solid or liquid material that is toxic, ignitable, corrosive, or reactive enough to explode or release.

Slides:



Advertisements
Similar presentations
Solid and Hazardous Waste
Advertisements

How Do We Dispose of Hazardous Materials?. Categories of Hazardous Materials (HAZMAT) Ignitability: Substance can catch on fire quickly (gasoline, alcohol)
Solid and Hazardous Waste
Waste management trash, recyclables, hazardous waste, nuclear waste, e-waste, biological waste, . . .
+ 1 st period Wednesday recycling Nick D, Analicia – Teacher’s lounge Shania, Luisa – Tamar’s room Noah, Sammy G – Odell’s room Cecilia – Tess’s room Uchenna.
Chapter 24 Solid and Hazardous Wastes
Solid and Hazardous Waste
Environmental Science
Hazardous waste. Threatens human health or the environment in some way because it is –toxic –chemically active –corrosive –flammable –or some combination.
Solid and hazardous Wastes
Chapter 22 Solid and Hazardous Waste. Love Canal — There Is No “Away”  Between , Hooker Chemical sealed multiple chemical wastes into steel.
SolidWaste Ch. 22 Second Half. Solutions: Reducing Solid Waste Refuse: to buy items that we really don ’ t need. Reduce: consume less and live a simpler.
Solid and Hazardous Waste
Solid and Hazardous Waste
Making the Transition to a Low-Waste Society: A New Vision
Chapter 22 Solid and Hazardous Waste. Core Case Study: Love Canal — There Is No “Away”  Between , Hooker Chemical sealed multiple chemical wastes.
Waste Management 19 CHAPTER
Chapter 17 Solid wastes!. Wasted Resources Less than 5% of the world’s population (4.6% in the USA) Produce more than 33% of the world’s solid waste.
Chapters 12.2 and 12.3 HAZARDOUS WASTE AND REDUCING WASTE.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Fresh Kills: Landfill to Park.
Solid and Hazardous Waste
Solid and Hazardous Waste
WasteSection 3 Section 3: Hazardous Waste Preview Bellringer Objectives Types of Hazardous Waste Resource Conservation and Recovery Act The Superfund Act.
News _offer_target_for_cutting_greenhouse_gas_emissions/
Solid and Hazardous Waste. WASTING RESOURCES  Solid waste: any unwanted or discarded material we produce that is not a liquid or gas. Municipal solid.
Do Now: What do these images have in common. Do you own any of them? If so, where do you dispose of them once their used up?
Solid and Hazardous Waste Chapter 21 “Solid wastes are only raw materials we’re too stupid to use.” Arthur C. Clarke.
` Area VI: Pollution VIB2: Hazardous Chemicals in the Environment.
WasteSection 3 Types of Hazardous Waste Hazardous wastes are wastes that are a risk to the health of humans or other living organisms. They may be solids,
Solid and Hazardous Waste
Garbage. We throw away… Enough aluminum to rebuild the country’s commercial airline fleet every 3 months Enough tires each year to encircle the planet.
Unit 8: Waste Management Section 1: Solid and Hazardous Waste.
Environmental Hazards and Human Health, Part 1. CHEMICAL HAZARDS A hazardous chemical can harm humans or other animals because it may: –Be flammable –Be.
APES – Solid & Hazardous Waste (Chapter 21-4 through 21-6)
Solid & Hazardous Wastes. Domestic Waste  38 % Paper  18% Yard waste  8% Metals  8% Plastic (20% by volume)  7% Glass  7% Food  14% Miscellaneous.
Section 5 Section 6 Section 7 Section 8
Hazardous Waste Environmental Science Chapter 19 Section 3.
Hazardous Waste. 1.Toxic: – Arsenic, pesticides, paints, anti-freeze, cleaning products 2.Ignitable – Acetone, gasoline, charcoal fluid 3.Explosive/reactive.
Chapter 21 Solid and Hazardous Waste. Core Case Study: Love Canal — There Is No “Away”  Between , Hooker Chemical sealed multiple chemical wastes.
Topic 22: Environmental Hazards and Human Health, Part 1.
Hazardous Waste Objective: I will evaluate and describe effective means of managing and disposing hazardous waste.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Hazardous Waste.
Bellringer. Types of Hazardous Waste Hazardous wastes are wastes that are a risk to the health of humans or other living organisms. – They include: solids,
Solid and Hazardous Waste. Core Case Study: Love Canal — There Is No “Away”  Between , Hooker Chemical sealed multiple chemical wastes into.
Landfills and Hazardous Wastes. Landfills In landfills, waste is buried in the ground or piled up in large, carefully engineered mounds In landfills,
Solid and Hazardous Waste A Look at Waste Management Systems.
Solid and Hazardous Waste. E-waste—An Exploding Problem 1. Electronic waste, e- waste: fastest growing solid waste problem 2. Most ends up in landfills.
Solid and Hazardous Waste G. Tyler Miller’s Living in the Environment 14 th Edition Chapter 24 G. Tyler Miller’s Living in the Environment 14 th Edition.
Catalyst 6/5/13 Complete Chapter 19 Lesson 2 Assessment on page 595. Take benchmark review packet. This is OPTIONAL.
Composting biodegradable organic waste is a way to recycle the yard trimmings and food wastes that would be sent to a landfill. Composting mimics nature.
Solid Waste. What is solid waste and what are the different types? Industrial Municipal.
Waste Generation and Waste Disposal
Solid and Hazardous Waste
Solid and Hazardous Waste Notes
Waste Generation and Waste Disposal
Solid and Hazardous Waste
Solid and Hazardous Waste
Solid and Hazardous Waste
Solid and Hazardous Waste Notes
Waste Unit 3.
Average person produces 1700 lbs of MSW per year
Solid and Hazardous Waste
Solid and Hazardous Waste
Core Case Study: E-Waste – An Exploding Problem
Classroom Catalyst.
Hazardous Waste Any waste that is a risk to the health of humans or other living things Solids, liquids, and gases Often contain toxic, corrosive, or.
Hazardous Waste.
Waste Generation and Waste Disposal
Unit 9: Waste Management
Presentation transcript:

HAZARDOUS WASTE  Hazardous waste: is any discarded solid or liquid material that is toxic, ignitable, corrosive, or reactive enough to explode or release toxic fumes. The two largest classes of hazardous wastes are organic compounds (e.g. pesticides, PCBs, dioxins) and toxic heavy metals (e.g. lead, mercury, arsenic). The two largest classes of hazardous wastes are organic compounds (e.g. pesticides, PCBs, dioxins) and toxic heavy metals (e.g. lead, mercury, arsenic).

What Harmful Chemicals Are in Your Home? Glues and cements Dry-cell batteries (mercury and cadmium) Rust inhibitor and rust remover Brake and transmission fluid General Cleaning Battery acid Wood preservatives Stains, varnishes, and lacquers Automotive Gasoline Used motor oil Paint Latex and oil-based paints Paint thinners, solvents, and strippers Gardening Pesticides Weed killers Ant and rodent killers Antifreeze Flea powders Disinfectants Septic tank cleaners Spot removers Drain, toilet, and window cleaners Artist paints and inks Solvents

Hazardous Waste Regulations in the United States  Two major federal laws regulate the management and disposal of hazardous waste in the U.S.: Resource Conservation and Recovery Act (RCRA) … pronounced RICK-ra Resource Conservation and Recovery Act (RCRA) … pronounced RICK-ra Cradle-to-the-grave system to keep track waste.Cradle-to-the-grave system to keep track waste. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Commonly known as Superfund program.Commonly known as Superfund program.

Hazardous Waste Regulations in the United States  The Superfund law was designed to have polluters pay for cleaning up abandoned hazardous waste sites. Only 70% of the cleanup costs have come from the polluters, the rest comes from a trust fund financed until 1995 by taxes on chemical raw materials and oil. Only 70% of the cleanup costs have come from the polluters, the rest comes from a trust fund financed until 1995 by taxes on chemical raw materials and oil. **Note: Congress did not renew this this tax, the Superfund is now broke, taxpayers (not the polluters!) are paying the bill and the pace of cleanup has slowed. National Priorities List (NPL) The worst sites that represent an immediate and severe threat to human health National Priorities List (NPL) The worst sites that represent an immediate and severe threat to human health

DEALING WITH HAZARDOUS WASTE  We can produce less hazardous waste and recycle, reuse, detoxify, burn, and bury what we continue to produce.

Conversion to Less Hazardous Substances  Physical Methods: using charcoal or resins to separate out harmful chemicals.  Chemical Methods: using chemical reactions that can convert hazardous chemicals to less harmful or harmless chemicals.

Conversion to Less Hazardous Substances  Biological Methods: Bioremediation: bacteria or enzymes help destroy toxic and hazardous waste or convert them to more benign substances. Bioremediation: bacteria or enzymes help destroy toxic and hazardous waste or convert them to more benign substances. Phytoremediation: involves using natural or genetically engineered plants to absorb, filter and remove contaminants from polluted soil and water. Phytoremediation: involves using natural or genetically engineered plants to absorb, filter and remove contaminants from polluted soil and water.

Phytostabilization Plants such as willow trees and poplars can absorb chemicals and keep them from reaching groundwater or nearby surface water. Rhizofiltration Roots of plants such as sunflowers with dangling roots on ponds or in green- houses can absorb pollutants such as radioactive strontium- 90 and cesium-137 and various organic chemicals. Phytoextraction Roots of plants such as Indian mustard and brake ferns can absorb toxic metals such as lead, arsenic, and others and store them in their leaves. Plants can then be recycled or harvested and incinerated. Phytodegradation Plants such as poplars can absorb toxic organic chemicals and break them down into less harmful compounds which they store or release slowly into the air. Inorganic metal contaminants Organic contaminants Radioactive contaminants Brake fern Poplar tree Indian mustard Willow tree Sunflower Oil spill Landfill Groundwater Soil Polluted leachate Decontaminated water out Polluted groundwater in Groundwater Soil

Inexpensive Low energy use Easy to establish Trade-Offs Phytoremediation AdvantagesDisadvantages Some plants can become toxic to animals Some toxic organic chemicals may evaporate from plant leaves Produces little air pollution compared to incineration Can reduce material dumped into landfills Slow (can take several growing seasons) Effective only at depth plant roots can reach

Conversion to Less Hazardous Substances  Incineration: heating many types of hazardous waste to high temperatures – up to 2000 °C – in an incinerator can break them down and convert them to less harmful or harmless chemicals.

Conversion to Less Hazardous Substances  Plasma Torch: passing electrical current through gas to generate an electric arc and very high temperatures can create plasma. The plasma process can be carried out in a torch which can decompose liquid or solid hazardous organic material. The plasma process can be carried out in a torch which can decompose liquid or solid hazardous organic material.

Advantages Trade-Offs Plasma Arc Small High cost Produces no toxic ash Can vaporize and release toxic metals and radioactive elements Can release particulates and chlorine gas Mobile. Easy to move to different sites Produces CO2 and CO Disadvantages

Long-Term Storage of Hazardous Waste  Hazardous waste can be disposed of on or underneath the earth’s surface, but without proper design and care this can pollute the air and water. Deep-well disposal: liquid hazardous wastes are pumped under pressure into dry porous rock far beneath aquifers. Deep-well disposal: liquid hazardous wastes are pumped under pressure into dry porous rock far beneath aquifers. Surface impoundments: excavated depressions such as ponds, pits, or lagoons into which liners are placed and liquid hazardous wastes are stored. Surface impoundments: excavated depressions such as ponds, pits, or lagoons into which liners are placed and liquid hazardous wastes are stored.

Fig , p. 539 Safe method if sites are chosen carefully Trade-Offs Deep Underground Wells AdvantagesDisadvantages Encourages waste production Existing fractures or earthquakes can allow wastes to escape into groundwater Leaks from corrosion of well casing Leaks or spills at surface Low cost Easy to do Wastes can be retrieved if problems develop

Low construction costs Can store wastes indefinitely with secure double liners Groundwater contamination from leaking liners (or no lining) Trade-Offs Surface Impoundments Advantages Promotes waste production Disruption and leakage from earthquakes Overflow from flooding Air pollution from volatile organic compounds Wastes can be retrieved if necessary Can be built quickly Low operating costs Disadvantages

Long-Term Storage of Hazardous Waste  Long-Term Retrievable Storage: Some highly toxic materials cannot be detoxified or destroyed. Metal drums are used to stored them in areas that can be inspected and retrieved.  Secure Landfills: Sometimes hazardous waste are put into drums and buried in carefully designed and monitored sites.

Secure Hazardous Waste Landfill  In the U.S. there are only 23 commercial hazardous waste landfills.

What Can You Do? Use pesticides in the smallest amount possible. Use less harmful substances instead of commercial chemicals for most household cleaners. For example use liquid ammonia to clean appliances and windows; vinegar to polish metals, clean surfaces, and remove stains and mildew; baking soda to clean household utensils, deodorize, and remove stains; borax to remove stains and mildew. Do not dispose of pesticides, paints, solvents, oil, antifreeze, or other products containing hazardous chemicals by flushing them down the toilet, pouring them down the drain, burying them, throwing them into the garbage, or dumping them down storm drains. Hazardous Waste

Case Study: Lead  Lead is especially harmful to children and is still used in leaded gasoline and household paints in about 100 countries.

Case Study: Mercury  Mercury is released into the environment mostly by burning coal and incinerating wastes and can build to high levels in some types of fish.

BIOMAGNIFICATION IN FOOD CHAIN SEDIMENT PRECIPITATION WINDS AIR WATER Inorganic mercury and acids (Hg 2+ ) Inorganic mercury and acids (Hg 2+ ) Organic mercury (CH 3 Hg + ) Inorganic mercury (Hg 2+ ) Hg 2+ and acids Runoff of Hg 2+ and acids Large fish Small fish ZooplanktonPhytoplankton Hg and SO 2 Hg 2 + and acids Human sources Incinerator Coal- burning plant Elemental mercury vapor (Hg) Photo- chemical Oxidation Elemental mercury liquid (Hg) Deposition Bacteria and acids Settles out Settles out Settles out Vaporization Deposition

ACHIEVING A LOW-WASTE SOCIETY  In the U.S., citizens have kept large numbers of incinerators, landfills, and hazardous waste treatment plants from being built in their local areas.  Environmental justice means that everyone is entitled to protection from environmental hazards without discrimination.

Making the Transition to a Low-Waste Society: A New Vision  Everything is connected.  There is no “away” for the wastes we produce.  Dilution is not always the solution to pollution.  The best and cheapest way to deal with wastes are reduction and pollution prevention.