MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu.

Slides:



Advertisements
Similar presentations
Silicon on Insulator Advanced Electronic Devices Karthik Swaminathan.
Advertisements

CMOS Fabrication EMT 251.
Simplified Example of a LOCOS Fabrication Process
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
1 Kimberly Manser Process Development for Double-Sided Fabrication of a Photodiode Process Development of a Double-Sided Photodiode (for application.
MIT Lincoln Laboratory 3-D Kickoff 1 CLK 4/7/00 3D Circuit Integration Technology for Multiproject Fabrication 7 April, 2000 James Burns, Andy Curtis,
Design and Implementation of VLSI Systems (EN1600) lecture04 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Sedra/Prentice.
Elettronica D. AA Digital Integrated Circuits© Prentice Hall 1995 Manufacturing Process CMOS Manufacturing Process.
Design and Implementation of VLSI Systems (EN0160) Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Sedra/Prentice Hall, Saint/McGrawHill,
Paulo MoreiraTechnology1 Outline Introduction – “Is there a limit ?” Transistors – “CMOS building blocks” Parasitics I – “The [un]desirables” Parasitics.
Sample Devices for NAIL Thermal Imaging and Nanowire Projects Design and Fabrication Mead Mišić Selim Ünlü.
Device Fabrication Example
Digital Integrated Circuits © Prentice Hall 1995 Manufacturing Process CMOS Manufacturing Process.
CMOS Process Integration ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May March 25, 2004.
Status and outlook of the Medipix3 TSV project
3D chip and sensor Status of the VICTOR chip and associated sensor Bonding and interconnect of chip and sensor Input on sensor design and interconnection.
ISAT 436 Micro-/Nanofabrication and Applications MOS Transistor Fabrication David J. Lawrence Spring 2001.
Fabrication of Active Matrix (STEM) Detectors
Avogadro-Scale Engineering: Form and Function MIT, November 18, Three Dimensional Integrated Circuits C.S. Tan, A. Fan, K.N. Chen, S. Das, N.
Outline Introduction CMOS devices CMOS technology
MOHD YASIR M.Tech. I Semester Electronics Engg. Deptt. ZHCET, AMU.
1 Monolithic Pixel Sensor in SOI Technology - First Test Results H. Niemiec, M. Koziel, T. Klatka, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor University.
Silicon – On - Insulator (SOI). SOI is a very attractive technology for large volume integrated circuit production and is particularly good for low –
Metallization: Contact to devices, interconnections between devices and to external Signal (V or I) intensity and speed (frequency response, delay)
IC Process Integration
SILICON DETECTORS PART I Characteristics on semiconductors.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated.
Lecture 24a, Slide 1EECS40, Fall 2004Prof. White Lecture #24a OUTLINE Device isolation methods Electrical contacts to Si Mask layout conventions Process.
Fabrication Technology(1)
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #3. Diffusion  Introduction  Diffusion Process  Diffusion Mechanisms  Why Diffusion?  Diffusion Technology.
Foundry Characteristics
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #4. Ion Implantation  Introduction  Ion Implantation Process  Advantages Compared to Diffusion  Disadvantages.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
Silicon detector processing and technology: Part II
Norhayati Soin 05 KEEE 4426 WEEK 12/1 3/13/2005 KEEE 4426 WEEK 12 CMOS FABRICATION PROCESS.
1 FNAL Pixel R&D Status R. Lipton Brief overview due to 3 failed MS Powerpoint versions –3D electronics New technologies for vertical integration of electronics.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
IC Fabrication/Process
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
Sagi Mathai 1 Si WDM Modulator Array for FWH-OCDMA Sagi Mathai, Xin Sun Prof. Tsu-Jae King, Prof. Ming C. Wu EECS Department University of California,
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
MIT Lincoln Laboratory kickoff-1 PWW 4/7/2000 Via Topology for 3-D Integration 7 April 2000 Peter W. Wyatt and Paul V. Davis
XYZ 1/7/2016 MIT Lincoln Laboratory APS-2 Diode Simulation First Look V. Suntharalingam 27 July 2007.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Sabina Ronchin 1, Maurizio Boscardin 1, Nicola Zorzi 1, Gabriele Giacomini 1, Gian-Franco Dalla-Betta 2, Marco Povoli 3, Alberto Quaranta 2 ; Giorgio Ciaghi.
(Chapters 29 & 30; good to refresh 20 & 21, too)
Development of SOI pixel sensor 28 Sep., 2006 Hirokazu Ishino (Tokyo Institute of Technology) for SOIPIX group.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Patterning - Photolithography
CMOS Fabrication EMT 251.
XYZ 10/2/2016 MIT Lincoln Laboratory APS-2 Status Vyshi Suntharalingam, Tony Soares, Rich D’Onofrio May 30, 2008.
Process integration 2: double sided processing, design rules, measurements
Fully Depleted Low Power CMOS Detectors
New Mask and vendor for 3D detectors
Simplified process flow for bonding interface characterization
I. Rashevskaya on behalf of the Slim5 Collaboration, Trieste Group
Manufacturing Process I
EMT362: Microelectronic Fabrication
Fully depleted CMOS sensor using reverse substrate bias
Bonding interface characterization devices
Chapter 1 & Chapter 3.
Production of 3D silicon pixel sensors at FBK for the ATLAS IBL
Optional Reading: Pierret 4; Hu 3
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
Process flow part 2 Develop a basic-level process flow for creating a simple MEMS device State and explain the principles involved in attaining good mask.
Manufacturing Process I
Manufacturing Process I
3D sensors: status and plans for the ACTIVE project
Presentation transcript:

MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu

MIT Lincoln Laboratory NU Status-2 JAB 11/20/2015 3D Photodiode Development Snapshot Goal –Produce high quality photodiodes for visible imaging Standard CMOS processes do not produce image-quality photodiodes Photodiode process must be compatible with 3D integration Approach –Review existing Lincoln silicon-photodiode processes –Optimize an existing process to meet the active pixel sensor requirements using Process and device simulation Additional characterization of existing photodiodes Tasks –Define photodiode requirements –Define photodiode fabrication process –Layout a photodiode test chip –Fabricate and characterize photodiodes 3 runs to optimize device properties 3D integration and photodiode characterization

MIT Lincoln Laboratory NU Status-3 JAB 11/20/2015 Lincoln Silicon Photodiode Survey A comparison of photodiodes and the principal processes which affect dark current

MIT Lincoln Laboratory NU Status-4 JAB 11/20/2015 Photodiode Process 1st Pass Bulk substrate –25-  m epi, 300  -cm –0.01  -cm p-type wafer Process highlights –LOCOS isolation 30-nm stress-relief oxide 20-nm Si 3 N 4 –250-nm field oxide –Dual N + implant Phosphorus to obtain a deep junction Arsenic to maintain high C 0 –Extended anneal to repair N + implant damage Eight Mask Levels –Six through metal-1, passivation –Deep via and back metal for 3D integration tests

MIT Lincoln Laboratory NU Status-5 JAB 11/20/2015 Photodiode Simulations Profile following field oxidation LOCOS bird’s beak limits fill factor Completed simulation indicates a 1-  m junction depth 0.5  m P-type epi XjXj Field Oxide

MIT Lincoln Laboratory NU Status-6 JAB 11/20/2015 Photodiode Test Chip Characterization Front side measurements –Diode leakage vs diode area, perimeter –Cross talk vs diode, isolation spacing –Diode responsivity(  ), dark current, linearity(  ) –Array uniformity and yield Back side measurements –Determine if bond process degrades photodiode –Measure photodiode properties vs silicon thickness 3D imager –Measure photodiode properties vs deep via resistance –Determine whether 3D assembly degrades photodiode –Deep via and back metal layers included in reticle set

MIT Lincoln Laboratory NU Status-7 JAB 11/20/2015 Imager Test Devices Diode Array Array measurements –Leakage and cross talk vs diode area and N + N +, N + P + spacing –Responsivity, linearity, and yield P+ Contacts N+P Diodes Metal-1

MIT Lincoln Laboratory NU Status-8 JAB 11/20/2015 Imager test Devices Edge Effects Diode Measure leakage vs diode area, perimeter to isolate edge effects –LOCOS-induced stress, inadequate channel stop –Misaligned contacts N+P Diodes-5 in parallel N+P Outer Diodes-2 in parallel P+ Contact

MIT Lincoln Laboratory NU Status-9 JAB 11/20/2015 Imager Test Devices Individual Diodes Measure leakage vs isolation features N+-N+ Gap N+P Diode P+ Contact

MIT Lincoln Laboratory NU Status-10 JAB 11/20/2015 Imager test Devices Parasitic FET Characterize leakage mechanisms –separate surface from bulk leakage with metal gate –determine minimum N + separation L g Metal-1 Gate N+P Diode W P+ Contact G o

MIT Lincoln Laboratory NU Status-11 JAB 11/20/2015 Backside Illuminated Characterization Photodiode wafer bonded to support wafer –Silicon thinned –Silicon etched to expose metal-1 pads Standard CCD process for backside imaging Photodiode wafer Support wafer + Silicon Oxide Metal-1 Bond layerN + Silicon Support wafer Completed backside imager  Support wafer

MIT Lincoln Laboratory NU Status-12 JAB 11/20/2015 3D Assembly Characterization Photodiode wafer bonded to oxidized silicon wafer –Silicon removed from transfer wafer –Deep vias etched and connections made to metal-1 of photodiode wafer Assembly bonded to support wafer –Silicon thinned –Silicon etched to expose metal-1 pads Photodiode wafer Transfer wafer + Photodiode wafer  Completed backside imager Support wafer

MIT Lincoln Laboratory NU Status-13 JAB 11/20/2015 Photodiode Development Status Silicon photodiode process survey complete Initial process defined; optimization via simulation underway Test devices defined; layout nearly complete