Metallic magnetic calorimeters (MMC) for high resolution x-ray spectroscopy Loredana GASTALDO, Markus LINCK, Sönke SCHÄFER, Hannes ROTZINGER, Andreas BURCK,

Slides:



Advertisements
Similar presentations
X-Ray Astronomy Lab X-rays Why look for X-rays? –High temperatures –Atomic lines –Non-thermal processes X-ray detectors X-ray telescopes The Lab.
Advertisements

Saeedeh Ghaffari Nanofabrication Fall 2011 April 15 1.
Recent progress with TES microcalorimeters and signal multiplexing J. Ullom NIST NASA GSFC SRON J. Beall R. Doriese W. Duncan L. Ferreira G. Hilton R.
LTD12, Paris Microstructured magnetic calorimeter with meander shaped pickup coil A. Burck S. Kempf, S. Schäfer, H. Rotzinger, M. Rodrigues, T. Wolf, A.
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005.
X-ray Astronomy Lee Yacobi Selected Topics in Astrophysics July 9.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
TES Bolometer Array with SQUID readout for Apex
X-Ray Spectroscopy. 1 eV 100 eV 10 eV Energy (keV) The need for high resolution X-ray spectroscopy Astrophysical Plasmas: Simulation of the emission from.
MIT work plan for fast electron stopping in dense and astrophysical plasmas and in DD/DT ice 1 October 2004–30 September 2005 Theoretical Computational.
June X-Ray Spectroscopy with Microcalorimeters1 X-Ray Spectrometry with Microcalorimeters.
experimental platform
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
ConX – XEUS meeting Panu Helistö, Mikko Kiviranta Utrecht,
Nmr Spectroscopy Chemistry Objectives u Nmr basics u chemical shifts u relaxation times u 2-Dimensional Nmr experiments u COSY u NOESY u What kind.
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
1 Workshop on X-ray Mission Architectural Concepts Linthicum, MD December 14-15, 2011 Enabling Technologies for the High-Resolution Imaging Spectrometer.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
MANU2: status report Maria Ribeiro Gomes* for the Genoa Group IAP, 14-Nov-05 * pos-doc under TRN HPRN-CT
DDEP 2012 | C. Bisch – Study of beta shape spectra 1 Study of the shape of  spectra Development of a Si spectrometer for measurement of  spectra 
Recent Progress in Silicon Microcalorimeters and Their Prospects for NeXT (and other missions) Caroline A. Kilbourne NASA Goddard Space Flight Center.
Stefano Pirro, IDEA Meeting -Zaragoza November 7, Nd Project High Temperature Thermistors News about NdGaO 3 Scintillating Bolometers Conclusions.
Large Area Microcalorimeters of the Diffuse X-ray Background Sarah Bank Towson University August 5, 2004.
Background from the NIST test The pencil neutron beam (1 mm 2 ) with intensity about 7000 n/sec The beam was completely absorbed in the beam stop with.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Performance limits of a 55  m pixel CdTe detector G.Pellegrini, M. Lozano, R. Martinez, M. Ullan Centro Nacional de Microelectronica, Barcelona, 08193,
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Status of Development of Metallic Magnetic Calorimeters A.Fleischmann, T. Daniyarov H. Rotzinger, M. Linck, C. Enss Kirchhoff-Institut für Physik Universität.
DEVELOPMENT OF BETA SPECTROMETRY USING CRYOGENIC DETECTORS M. Loidl, C. Le-Bret, M. Rodrigues, X. Mougeot CEA Saclay – LIST / LNE, Laboratoire National.
SEM- Schematic Overview. Electron Detection Tungsten Filament Electron Source.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
Determination of activity of 51 Cr source on gamma radiation measurements V.V.Gorbachev, V.N.Gavrin, T.V.Ibragimova, A.V.Kalikhov, Yu.M.Malyshkin,A.A.Shikhin.
XEUS Cryogenic Instrument October 2004 Cryogenic X-ray sensor development in US, Europe and Japan Micro-calorimeters Doped - thermistors Astro-E2.
Ultra-low Field Nuclear Magnetic Resonance Measurements with SQUIDs
FSS Review 28 th August Overview of what I’ve worked on… Stabilising voltage supply 0-200V with a Peltier Cooler Shield rubidium vapour cell from.
Metallic Magnetic Calorimeters for High-Resolution X-ray Spectroscopy D. Hengstler, C. Pies, S. Schäfer, S. Kempf, M. Krantz, L. Gamer, J. Geist, A. Pabinger,
Laboratory Astrophysics using an Engineering Model XRS Microcalorimeter Array NASA/GSFCLLNL. F. Scott PorterPeter Beiersdorfer Keith GendreauGreg Brown.
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search.
B. Azadegan, S. A. Mahdipour Hakim Sabzevari University
1 MARE: Status and Perspectives Flavio Gatti University and INFN of Genoa on behalf of the MARE Collaboration NUMASS2010 INT Seattle, Feb. 9, 2010.
1. What is an NMR Spectrum ? 2. What are the Spectral Features? 3. What are the Spectral Parameters? 4. How much should be known about the NMR Phenomena.
MARE Microcalorimeter Arrays for a Rhenium Experiment A DETECTOR OVERVIEW Andrea Giuliani, University of Insubria, Como, and INFN Milano on behalf of the.
New emission Mössbauer spectroscopy studies at ISOLDE in 2015 Haraldur Páll Gunnlaugsson, Torben E. Mølholt, Karl Johnston, Juliana Schell, The Mössbauer.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
DESCRIPTION OF PIXIRAD  The PIXIRAD Imaging Counter is an INFN-Pisa Spin-off  It works in photon counting  Pulse discrimination with two thresholds.
V.Aulchenko 1,2, L.Shekhtman 1,2, B.Tolochko 3,2, V.Zhulanov 1,2 Budker Institute of Nuclear Physics, , Novosibirsk, Russia Novosibirsk State University,
Yong-Hamb Kim Development of cryogenic CaMoO 4 detector 2nd International Workshop on double beta decay search Oct. 7~ Oct. 8, 2010.
DEVELOPMENT OF PIXELLATED SEMICONDUCTOR DETECTORS FOR NEUTRON DETECTION Prof. Christer Fröjdh Mid Sweden University.
Current status of R&D on MMC and TES and a full size crystal test setup Sang-jun Lee Seoul National University.
Akhmatov Z.A1, Khokonov A.Kh1,2, Masaev M.B1, Romanenko V.S1.
Microwave SQUID multiplexer for the readout of large MMC arrays
Cryogenic Particle Detectors in Rare event Searches
Chen Yong 陈勇 Institute of High Energy Physics, CAS
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Irina Bavykina, MPI f. Physik
Measurements of the 238U radiative capture cross section using C6D6
PARTICLE FLUX CALCULATION-III
Energy Fluctuations in the Canonical Ensemble
Inverse Square Sensitivity
Radiation Detection via Transition Edge Sensor (TES)
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Overview of the Low Energy Telescope and its Performance in-orbit
Design of A New Wide-dynamic-range Neutron Spectrometer for BNCT with Liquid Moderator and Absorber S. Tamaki1, I. Murata1 1. Division of Electrical,
MARE (microcalorimeter array for a rhenium experiment)
Presentation transcript:

Metallic magnetic calorimeters (MMC) for high resolution x-ray spectroscopy Loredana GASTALDO, Markus LINCK, Sönke SCHÄFER, Hannes ROTZINGER, Andreas BURCK, Sebastian KEMPF, Jan-Patrick PORST, Andreas FLEISCHMANN, Christian ENSS, George M. SEIDEL

Inverse Temperature T  1 [K  1 ] Magnetization M [A/m] Au:Er 300 ppm Temperature T [mK] Specific heat C [10  4 J mol  1 K  1 ] Au:Er 300 ppm Detector setup Thermodynamic properties of interacting spins (RKKY) can be calculated with confidence by mean field approximations or Monte Carlo simulations optimization by numerical methods is possible mK 4.2 K 300 K B Very stable material suitable for long lasting measurements

Fluctuations of energy in a canonical ensemble Magnetic Johnson noise (thermal currents in the metallic sensor ) Flux noise of the SQUID-magnetometer energy sensitivity close to quantum limit required, 1/f noise sensor electron SQUID (order of magnitude: 1eV for a 10 keV x-ray detector) C abs C spins Noise & energy resolution

Aluminum thin window Lead Collimator Brass holder Circuit board Field coil Superconducting shield (lead) Detector set-up Detector SQUID: KSUP (IBM) Amplifier SQUID: CCBlue (IPHT Jena) Sensor  Au:Er 600 ppm  x (12.5) 2 x 8  m 3 Absorber  Au 180 x 180 x 5  m 3 stopping power above 6 keV Pulses acquired at different temperatures and at different magnetic fields Detector SQUID

Magnetization and chip temperature Magnetic Flux T bath [K] T chip [K] Dissipation on the SQUID chip leads to a decoupling of the chip temperature from the bath temperature

Pulse analysis Rise time 100  s fast decay time 650  s Decay time slow decay time 8.1 ms Time t [ms] The amplitude of pulses saturates at low temperatures and high fields Temperature T [mK]

55 Fe energy spectrum Counts / 2 eV Counts / 15 eV Energy E [keV] Very low background A  keV B  keV Energy [keV] Transition

Energy resolution and linearity Counts / 0.24 eV Counts / 0.12 eV Energy Energy E [keV] Relative pulse amplitude A Measured energy E exp [keV] Difference [eV] Energy E [keV] A - A i TFN  0.38 eV + SQUID  1.14 eV + 1/f  1.6 eV ???? 1.85 eV still missing! 1/f 2 due to temperature fluctuations of the chip

Conclusion and future plans 2,7 eV energy resolution is a good result but it does not rapresent the limit of magnetic calorimeters Improvements of our detector will follow the good results we are obtaining with microstructuring techniques Er enriched Au:Er sputter target -Sputtered Au:Er sensor -Overhanging absorber