Number System sneha.

Slides:



Advertisements
Similar presentations
Number Systems. Common Number Systems SystemBaseSymbols Used by humans? Used in computers? Decimal100, 1, … 9YesNo Binary20, 1NoYes Octal80, 1, … 7No.
Advertisements

NUMBER SYSTEM. How to convert hexadecimal numbers to decimal numbers? 230 Working from right to left, MULTIPLY each position with 8 raised to the power.
DATA REPRESENTATION CONVERSION.
Number SystemsNumber Systems Modified By: AM. Sihan (Hardware Engineering)
ITEC 1011 Introduction to Information Technologies 1. Number Systems Chapt. 2 Location in course textbook.
Converting Binary to Octal
Prepared By Rama Gaikwad 1. Number Systems. Common Number Systems SystemBaseSymbols Used by humans? Used in computers? Decimal100, 1, … 9YesNo Binary20,
Data Storage Introduction to computer, 2nd semester, 2010/2011 Mr.Nael Aburas Faculty of Information Technology Islamic.
Number Systems.
Lecture 7 How computers process data (Number Systems) PRESENTED BY MD. MAHBUBUL ALAM, PHD 1.
Fundamentals of IT UNIT-I OnlyforIPMCA. DIGITAL SIGNALS & LOGIC GATES Signals and data are classified as analog or digital. Analog refers to something.
Conversion of Number System Conversion Among Bases The possibilities: Hexadecimal DecimalOctal Binary
NUMBER SYSTEM.
IT101: INFORMATION TECHNOLOGY FUNDAMENTALS 1 Edited By Dr. Ahmed Abo-Bakr Information Technology Dept. Faculty of Computers & Information.
NUMBER SYSTEMS Prepared By K.Anitha Associate Professor Dept of ECE PVPSIT.
Number systems, Operations, and Codes
Chapter1: Number Systems
Number Systems Prepared by Department of Preparatory year.
Positional Notation 642 in base 10 positional notation is:
INTRODUCTION TO MICROPROCESSOR Engr. Ammar Anwar Khan.
Number Base Conversions
Octal to Decimal Hexadecimal DecimalOctal Binary.
MicroProcessors Dr. Tamer Samy Gaafar Dept. of Computer & Systems Engineering Faculty of Engineering Zagazig University.
1. Number Systems. Common Number Systems SystemBaseSymbols Used by humans? Used in computers? Decimal100, 1, … 9YesNo Binary20, 1NoYes Octal80, 1, … 7No.
DECIMALBINARY a) b) c) d) e) f) Revision Exercise DECIMALBINARY a) b) c)
Binary01.ppt Decimal Decimal: Base 10 means 10 Unique numerical digits ,00010,000 Weight Positions 3,
Data Representation (in computer system). Data Representation How do computers represent data? b The computers are digital Recognize.
Number Systems. Common Number Systems SystemBaseSymbols Used by humans? Used in computers? Decimal100, 1, … 9YesNo Binary20, 1NoYes Octal80, 1, … 7No.
Computer Programming 12 Mr. Jean February 11 th, 2014.
Lecture 2 Number Systems
MODULE –I NUMBER SYSTEM Digital Design Amit Kumar Assistant Professor SCSE, Galgotias University, Greater Noida.
NUMBER SYSTEM. Number System Number Base B => B symbols – Base 16(Hexa):0, 1,……9, A,…, E, F – Base 10 (Decimal): 0, 1, 2,……, 7, 8, 9 – Base 8(Octal):
Computer Number System
Programming 12 : Mr. Jean February 8 th, The plan: Video clip of the day Website Introduction to Hexadecimal Converting from Hexadecimal to Decimal.
1. Number Systems Chapt. 2 Location in course textbook.
ITEC 1011 Introduction to Information Technologies 1. Number Systems Chapt. 2 Location in course textbook.
Prepared By: Md Rezaul Huda Reza University of South Asia Computer Architecture By: Md Rezaul Huda Reza
1. Number Systems. Common Number Systems SystemBaseSymbols Used by humans? Used in computers? Decimal100, 1, … 9YesNo Binary20, 1NoYes Octal80, 1, … 7No.
Cis303a_chapt03_exam1_answer.ppt CIS303A: System Architecture Exam 1: Chapter 3 Answer List the characters (digits) for the following bases. 1) Decimal:
The Hexadecimal System is base 16. It is a shorthand method for representing the 8-bit bytes that are stored in the computer system. This system was chosen.
Number Systems. ASCII – American Standard Code for Information Interchange – Standard encoding scheme used to represent characters in binary format on.
Number Systems. There are 10 kinds of people in the world, those who understand binary and those who don’t.
Chapter 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS.
1. Number Systems Chapt. 2. Common Number Systems SystemBaseSymbols Used by humans? Used in computers? Decimal100, 1, … 9YesNo Binary20, 1NoYes Octal80,
Octal to Decimal Decimal Octal Binary Hexadecimal.
1. Number Systems.
NUMBER SYSTEM Prepared by: Engr Zakria.
Number System.
ITE102 – Computer Programming (C++)
Base ‘b’ number for i = 0 to n – 1 for an n digit quantity
CSE 102 Introduction to Computer Engineering
Location in course textbook
2.0 COMPUTER SYSTEM 2.2 Number System and Representation
Chapter 1 Number Systems & Conversions
Data Storage Introduction to computer, 2nd semester, 2010/2011
MMNSS COLLEGE,KOTTIYAM DEPARTMENT OF PHYSICS
Numbering Systems and Arithmetic operations on Hex, binary, and octal
Chapter 2: Number Systems
Number Systems.
Number Systems created by: S.Shahrukh haider
Chapter 2 Number Systems.
Binary Addition (1 of 2) Two 1-bit values A B A + B 1
Chapter 2 Number Systems.
Chapter 2 Number Systems.
Chapter 2 Number System.
Chapter 2 Number Systems.
1. Number Systems Chapt. 2.
Presentation transcript:

Number System sneha

Topics to be discussed Number System Types of Number System Types of positional number system Binary to Decimal Octal to Decimal Hexadecimal to Decimal Decimal to Binary Octal to Binary Hexadecimal to Binary Decimal to Octal

Cont… Decimal to Hexadecimal Binary to Octal Binary to Hexadecimal Octal to Hexadecimal Hexadecimal to Octal Exercise – Convert ...

Number System A number system defines how a number can be represented using distinct symbols. A number can be represented differently in different systems. For example, the two numbers (2A)16 and (52)8 both refer to the same quantity, (42)10, but their representations are different. Several number systems have been used in the past and can be categorized into two groups: positional and non- positional systems. Our main goal is to discuss the positional number systems, but we also give examples of non- positional systems.

Types of Number System Two types of Number System Positional No System Non- Positional No System

Types of positional number system Various positional number system: Binary number system Decimal number system Octal number system Hexadecimal number system

Conversion Among Bases The possibilities Decimal Octal Binary Hexadecimal

Quick Example 2510 = 110012 = 318 = 1916 Base

Binary to Decimal Decimal Octal Binary Hexadecimal

Binary to Decimal Technique Multiply each bit by 2n, where n is the “weight” of the bit The weight is the position of the bit, starting from 0 on the right Add the results

Example Bit “0” 1010112 => 1 x 20 = 1 1 x 21 = 2 0 x 22 = 0 1 x 23 = 8 0 x 24 = 0 1 x 25 = 32 4310

Octal to Decimal Decimal Octal Binary Hexadecimal

Octal to Decimal Technique Multiply each bit by 8n, where n is the “weight” of the bit The weight is the position of the bit, starting from 0 on the right Add the results

Example 7248 => 4 x 80 = 4 2 x 81 = 16 7 x 82 = 448 46810

Hexadecimal to Decimal Octal Binary Hexadecimal

Hexadecimal to Decimal Technique Multiply each bit by 16n, where n is the “weight” of the bit The weight is the position of the bit, starting from 0 on the right Add the results

Example ABC16 => C x 160 = 12 x 1 = 12 B x 161 = 11 x 16 = 176 A x 162 = 10 x 256 = 2560 274810

Decimal to Binary Decimal Octal Binary Hexadecimal

Decimal to Binary Technique Divide by two, keep track of the remainder. If remainder is zero then it track zero If remainder is not zero then it track 1

Example 2 125 62 1 12510 = ?2 2 31 0 2 15 1 2 7 1 2 3 1 2 1 1 2 0 1 12510 = 11111012

Octal to Binary Decimal Octal Binary Hexadecimal

Octal to Binary Technique Convert each octal digit to a 3-bit equivalent binary representation

Example 7058 = ?2 7 0 5 111 000 101 7058 = 1110001012

Hexadecimal to Binary Decimal Octal Binary Hexadecimal

Hexadecimal to Binary Technique Convert each hexadecimal digit to a 4-bit equivalent binary representation

Example 10AF16 = ?2 1 0 A F 0001 0000 1010 1111 10AF16 = 00010000101011112

Decimal to Octal Decimal Octal Binary Hexadecimal

Decimal to Octal Technique Divide by 8 Keep track of the remainder

Example 123410 = ?8 8 1234 154 2 8 19 2 8 2 3 8 0 2 123410 = 23228

Decimal to Hexadecimal Octal Binary Hexadecimal

Decimal to Hexadecimal Technique Divide by 16 Keep track of the remainder

Example 123410 = ?16 16 1234 77 2 16 4 13 = D 0 4 123410 = 4D216

Binary to Octal Octal Decimal Hexadecimal Binary

Binary to Octal Technique Group bits in threes, starting on right Convert to octal digits

Example 10110101112 = ?8 1 011 010 111 1 3 2 7 10110101112 = 13278

Binary to Hexadecimal Decimal Octal Hexadecimal Binary

Binary to Hexadecimal Technique Group bits in fours, starting on right Convert to hexadecimal digits

Example 10101110112 = ?16 10 1011 1011 B B 10101110112 = 2BB16

Octal to Hexadecimal Octal Decimal Binary Hexadecimal

Octal to Hexadecimal Technique Use binary as an intermediary

Example 1 0 7 6 001 000 111 110 10768 = ?16 2 3 E 10768 = 23E16

Hexadecimal to Octal Octal Decimal Binary Hexadecimal

Hexadecimal to Octal Technique Use binary as an intermediary

Example 1 F 0 C 0001 1111 0000 1100 1F0C16 = ?8 1 7 4 1 4 1F0C16 = 174148

Exercise – Convert ... Decimal Binary Octal Hexa- decimal 33 1110101 703 1AF

Exercise – Convert … Decimal Binary Octal Hexa- decimal 33 100001 41 Answer Decimal Binary Octal Hexa- decimal 33 100001 41 21 117 1110101 165 75 451 111000011 703 1C3 431 110101111 657 1AF