1 91.427 Computer Graphics I, Fall 2010 Programming with OpenGL Part 3: Three Dimensions.

Slides:



Advertisements
Similar presentations
Basic of computer graphics with OpenGL. Handful graphics function  OpenGL :  by silicon graphics  PHIGS :  Programmer’s Hierarchical Graphics System.
Advertisements

1 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Programming with OpenGL Part 3: Three Dimensions.
OpenGL (Graphics Library) Software Interface to graphics software Allows to create interactive programs that produce color images of moving 3D objects.
Draw a Simple Object. Example 1/4 #include “ glut.h ” void display(); void reshape(GLsizei w, GLsizei h); void main(int argc, char** argv){ glutInit(&argc,
GK, Intro 1Hofstra University – CSC171A1 Computer Graphics Gerda Kamberova.
CSC 461: Lecture 51 CSC461 Lecture 5: Simple OpenGL Program Objectives: Discuss a simple program Discuss a simple program Introduce the OpenGL program.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Programming with OpenGL Part 2: Complete Programs Ed Angel Professor of Computer Science,
1 CSC461 Lecture 7: 3D Programming in OpenGL Objectives: Develop 2D and 3D examples -- Sierpinski gasket: a fractal Develop 2D and 3D examples -- Sierpinski.
Sierpinski Gasket Program
CAP 4703 Computer Graphic Methods Prof. Roy Levow Lecture 2.
1 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Programming with OpenGL Part 1: Background.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Programming with OpenGL Part 3: Three Dimensions Ed Angel Professor of Computer Science,
Geometric Primitives Used in Open GL Polygons Polygon is : Flat shape with three or more straight sides. It could be either : convex or concave.
Demetriou/Loizidou – ACSC330 – Chapter 2 Graphics Programming Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science Frederick Institute.
Computer Graphics CS 385 January 31, Fractals Some definitions Object which is self-similar at all scales. Regardless of scale the same level of.
Graphics Programming Chapter 2. CS 480/680 2Chapter 2 -- Graphics Programming Introduction: Introduction: Our approach is programming oriented. Our approach.
1 Figures are extracted from Angel's book (ISBN x) The Human Visual System vs The Pinhole camera Human Visual System Visible Spectrum Pinhole.
Introduction to GL Geb Thomas. Example Code int main(int argc, char **argv) { glutInit(&argc, argv); glutInitDisplayMode ( GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
Basic of computer graphics with OpenGL
1Computer Graphics Programming with OpenGL Three Dimensions – 2 Lecture 7 John Shearer Culture Lab – space 2
Chun-Yuan Lin Graphics Programming 2015/11/17 1 CG.
1 Programming with OpenGL Part 3: Three Dimensions Yuanfeng Zhou Shandong University.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
1Computer Graphics Programming with OpenGL Three Dimensions Lecture 06 John Shearer Culture Lab – space 2
1 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Programming with OpenGL Review.
1 Chapter 2: Graphics Programming Bryson Payne CSCI 3600 NGCSU.
CS 480/680 Computer Graphics Programming with Open GL Part 6: Three Dimensions Dr. Frederick C Harris, Jr. Fall 2011.
COMPUTER GRAPHICS Hochiminh city University of Technology Faculty of Computer Science and Engineering CHAPTER 02: Graphics Programming.
Draw a Simple Object. Pixel pipeline Vertex pipeline Course Map Transformation & Lighting Primitive assembly Viewport culling & clipping Texture blending.
1 Chapter 2 Graphics Programming. 2 Using OpenGL in Visual C++ – 1/3 Opengl32.dll and glu32.dll should be in the system folder Opengl32.lib and glu32.lib.
Doç. Dr. Cemil Öz SAÜ Bilgisayar Mühendisliği Dr. Cemil Öz.
OpenGL Basic Drawing 2003 Spring Keng Shih-Ling
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Programming with OpenGL Part 3: Three Dimensions Ed Angel Professor of Computer Science,
1 Programming with OpenGL Part 2: Complete Programs.
OpenGL API 2D Graphic Primitives Angel Angel: Interactive Computer Graphics5E © Addison-Wesley
1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 Programming with OpenGL Part 6: Three Dimensions Ed Angel Professor.
31/1/2006Based on: Angel (4th Edition) & Akeine-Möller & Haines (2nd Edition)1 CSC345: Advanced Graphics & Virtual Environments Lecture 2: Introduction.
OpenGL Basic Drawing Jian-Liang Lin A Smidgen of OpenGL Code #include main() { InitializeAWindowPlease(); glClearColor (0.0, 0.0, 0.0, 0.0); glClear.
Introduction to Graphics Programming. Graphics API.
Graphics Graphics Korea University kucg.korea.ac.kr Graphics Programming 고려대학교 컴퓨터 그래픽스 연구실.
CSC Graphics Programming Budditha Hettige Department of Statistics and Computer Science.
Computer Graphics I, Fall Programming with OpenGL Part 2: Complete Programs.
Computer Graphics (Fall 2003) COMS 4160, Lecture 5: OpenGL 1 Ravi Ramamoorthi Many slides courtesy Greg Humphreys.
C O M P U T E R G R A P H I C S Guoying Zhao 1 / 86 C O M P U T E R G R A P H I C S Guoying Zhao 1 / 86 Computer Graphics Programming with OpenGL II.
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Graphics Programming Chun-Yuan Lin CG 2018/5/15.
CS5500 Computer Graphics March 2, 2006.
Course code:10CS65 | Computer Graphics and Visualization
Programming with OpenGL Part 2: Complete Programs
Programming with OpenGL Part 1: Background
Materi Anatomi OpenGL Fungsi GLUT Posisi Kamera Proyeksi
Programming with OpenGL Part 3: Three Dimensions
OpenGL API 2D Graphic Primitives
Programming with OpenGL Part 2: Complete Programs
Introduction to Computer Graphics with WebGL
גרפיקה ממוחשבת: מבוא ל-OpenGL
CSC461: Lecture 24 Lighting and Shading in OpenGL
Programming with OpenGL Part 3: Three Dimensions
Introduction to OpenGL
Introduction to Computer Graphics with WebGL
Computer Graphics Gerda Kamberova GK, Intro 3 Hofstra University.
Introduction to Computer Graphics with WebGL
Programming with OpenGL Part 2: Complete Programs
Programming with OpenGL Part 2: Complete Programs
Programming with OpenGL Part 6: Three Dimensions
Programming with OpenGL Part 3: Three Dimensions
Programming with OpenGL Part 2: Complete Programs
Angel: Interactive Computer Graphics5E © Addison-Wesley 2009
Programming with OpenGL Part 3: Three Dimensions
Angel: Interactive Computer Graphics5E © Addison-Wesley 2009
Presentation transcript:

Computer Graphics I, Fall 2010 Programming with OpenGL Part 3: Three Dimensions

Computer Graphics I, Fall 2010 Objectives  Develop more sophisticated 3-D example  Sierpinski gasket: a fractal  Introduce hidden-surface removal

Computer Graphics I, Fall D Applications  In OpenGL, 2-D app’s = special case of 3-D graphics  Going to 3D  Not much changes  Use glVertex3*( )  Have to worry about order in which polygons drawn  or use hidden-surface removal  Polygons should be simple, convex, flat

Computer Graphics I, Fall 2010 Sierpinski Gasket (2D)  Start with a triangle  Connect bisectors of sides and remove central triangle  Repeat

Computer Graphics I, Fall 2010 Example  Five subdivisions

Computer Graphics I, Fall 2010 The gasket as a fractal  Consider filled area (black) and perimeter (length of all lines around filled triangles)  As continue subdividing  area goes to zero  but perimeter goes to infinity  Not ordinary geometric object  Neither 2- nor 3-D  Fractal (fractional dimension) object

Computer Graphics I, Fall 2010 Gasket Program #include /* initial triangle */ GLfloat v[3][2]={{-1.0, -0.58}, {1.0, -0.58}, {0.0, 1.15}}; int n; /* number of recursive steps */

Computer Graphics I, Fall 2010 Draw one triangle void triangle( GLfloat *a, GLfloat *b, GLfloat *c) /* display one triangle */ { glVertex2fv(a); glVertex2fv(b); glVertex2fv(c); }

Computer Graphics I, Fall 2010 Triangle Subdivision void divide_triangle(GLfloat *a, GLfloat *b, GLfloat *c, int m) { /* triangle subdivision using vertex numbers */ point2 v0, v1, v2; int j; if(m>0) { for(j=0; j<2; j++) v0[j]=(a[j]+b[j])/2; for(j=0; j<2; j++) v1[j]=(a[j]+c[j])/2; for(j=0; j<2; j++) v2[j]=(b[j]+c[j])/2; divide_triangle(a, v0, v1, m-1); divide_triangle(c, v1, v2, m-1); divide_triangle(b, v2, v0, m-1); } else(triangle(a,b,c)); /* draw triangle at end of recursion */ }

Computer Graphics I, Fall 2010 display and init Functions void display() { glClear(GL_COLOR_BUFFER_BIT); glBegin(GL_TRIANGLES); divide_triangle(v[0], v[1], v[2], n); glEnd(); glFlush(); } void myinit() { glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(-2.0, 2.0, -2.0, 2.0); glMatrixMode(GL_MODELVIEW); glClearColor (1.0, 1.0, 1.0,1.0) glColor3f(0.0,0.0,0.0); }

Computer Graphics I, Fall 2010 main Function int main(int argc, char **argv) { n=4; glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); glutInitWindowSize(500, 500); glutCreateWindow(“2D Gasket"); glutDisplayFunc(display); myinit(); glutMainLoop(); }

Computer Graphics I, Fall 2010 Efficiency Note  Having glBegin and glEnd in display callback  rather than in function triangle  and using GL_TRIANGLES  rather than GL_POLYGON in glBegin  ==> call glBegin and glEnd only once for entire gasket  rather than once for each triangle

Computer Graphics I, Fall 2010 Moving to 3D  Can easily make program 3-D by using GLfloat v[3][3] glVertex3f glOrtho  But not very interesting  Instead, can start with tetrahedron

Computer Graphics I, Fall D Gasket  Can subdivide each of four faces  Appears as if remove solid tetrahedron from center leaving four smaller tetrahedra

Computer Graphics I, Fall 2010 Example after 5 iterations

Computer Graphics I, Fall 2010 triangle code void triangle( GLfloat *a, GLfloat *b, GLfloat *c) { glVertex3fv(a); glVertex3fv(b); glVertex3fv(c); }

Computer Graphics I, Fall 2010 subdivision code void divide_triangle(GLfloat *a, GLfloat *b, GLfloat *c, int m) { GLfloat v1[3], v2[3], v3[3]; int j; if(m>0) { for(j=0; j<3; j++) v1[j]=(a[j]+b[j])/2; for(j=0; j<3; j++) v2[j]=(a[j]+c[j])/2; for(j=0; j<3; j++) v3[j]=(b[j]+c[j])/2; divide_triangle(a, v1, v2, m-1); divide_triangle(c, v2, v3, m-1); divide_triangle(b, v3, v1, m-1); } else(triangle(a,b,c)); }

Computer Graphics I, Fall 2010 tetrahedron code void tetrahedron( int m) { glColor3f(1.0,0.0,0.0); divide_triangle(v[0], v[1], v[2], m); glColor3f(0.0,1.0,0.0); divide_triangle(v[3], v[2], v[1], m); glColor3f(0.0,0.0,1.0); divide_triangle(v[0], v[3], v[1], m); glColor3f(0.0,0.0,0.0); divide_triangle(v[0], v[2], v[3], m); }

Computer Graphics I, Fall 2010 Almost Correct  triangles drawn in order they’re defined in program ==> front triangles not always rendered in front of triangles behind them get this want this

Computer Graphics I, Fall 2010 Hidden-Surface Removal  Want: see only surfaces in front of other surfaces  OpenGL uses hidden-surface method: “z-buffer” algorithm  saves depth information as objects rendered  ==> only front objects appear in image

Computer Graphics I, Fall 2010 Using the z-buffer algorithm  Alg uses extra buffer, z-buffer, to store depth information as geometry travels down pipeline  Must be  Requested in main.c  glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH)  Enabled in init.c  glEnable(GL_DEPTH_TEST)  Cleared in display callback  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

Computer Graphics I, Fall 2010 Surface vs Volume Subdvision  In example, divided surface of each face  Could also divide volume using same midpoints  Midpoints define four smaller tetrahedra, one for each vertex  Keeping only these tetrahedra removes volume in middle  See text for code

Computer Graphics I, Fall 2010 Volume Subdivision