(Tibet AS collaboration)

Slides:



Advertisements
Similar presentations
Recent Results from Super-Kamiokande on Atmospheric Neutrino Measurements Choji Saji ICRR,Univ. of Tokyo for the Super-Kamiokande collaboration ICHEP 2004,
Advertisements

Anisotropy in Cosmic Ray Arrival Directions Using IceCube and IceTop Frank McNally ISCRA.
Mathieu de Naurois, H.E.S.S.High Energy Phenomena in the Galacic Center H.E.S.S. Observations of the Galactic Center  The H.E.S.S. Instrument.
TeV Cosmic-ray Anisotropy & Tibet Yangbajing Observatory Qu Xiaobo Institute of High Energy Physics.
Experimental Observation Of Lepton Pairs Of Invariant Mass Around 95 GeV/c² At The CERN SPS Collider 不変質量 95 GeV/c² 近傍のレプトン対の実験的観測 Contents 1. Introduction.
Results from the Telescope Array experiment H. Tokuno Tokyo Tech The Telescope Array Collaboration 1.
Primary Cosmic-Ray Energy Spectrum Around The Knee Energy Region Measured By The Tibet Hybrid Experiment Physics at the End of the Galactic Cosmic Ray.
Bar-TOP における光の 群速度伝播の解析 名古屋大学 高エネルギー物理研究室 松石 武 (Matsuishi Takeru)
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
The presence of the South Pole Air Shower Experiment (SPASE) on the surface provides a set of externally tagged muon bundles that can be measured by AMANDA.
Gus Sinnis HAWC Review December 2007 Milagro a TeV Gamma-Ray Observatory Gus Sinnis Los Alamos National Laboratory.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
GLAST and NANTEN Molecular clouds as a probe of high energy phenomena Yasuo Fukui Nagoya University May 22, 2007 UCLA.
The Highest Energy Cosmic Rays Two Large Air Shower Detectors
S K The Many Uses of Upward- going Muons in Super-K Muons traveling up into Super-K from high-energy  reactions in the rock below provide a high-energy.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
North-south anisotropy of galactic cosmic rays observed with the Global Muon Detector Network 34 th ICRC (August 4, 2015, Den Hague) SH07 ID117 K. Munakata.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Konstantin Belov. GZK-40, Moscow. Konstantin Belov High Resolution Fly’s Eye (HiRes) Collaboration GZK-40. INR, Moscow. May 17, measurements by fluorescence.
Ultra-High Energy Cosmic Ray Research with the Pierre Auger Observatory Methods, Results, What We Learn, and expansion to Colorado Bill Robinson.
X.-X. Li, H.-H. He, F.-R. Zhu, S.-Z. Chen on behalf of the ARGO-YBJ collaboration Institute of High Energy Physics Nanjing GRB Conference,Nanjing,
Long-term monitor on Mrk 421 using ARGO-YBJ experiment S.Z Chen (IHEP/CAS/China, On behalf of the ARGO-YBJ collaboration  1. Introduction.
Preliminary MC study on the GRAND prototype scintillator array Feng Zhaoyang Institute of High Energy Physics, CAS, China GRAND Workshop, Paris, Feb. 015.
Atmospheric shower simulation studies with CORSIKA Physics Department Atreidis George ARISTOTLE UNIVERSITY OF THESSALONIKI.
Anisotropy of primary cosmic ray flux in Super-Kamiokande Yuichi Oyama (KEK) La Thuile 2006 for the Super-Kamiokande collaboration New astronomy.
Yakutsk results: spectrum and anisotropy M.I. Pravdin for Yukutsk Collaboration Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin.
Moon shadow analysis -- Using ARGO experiment Wang Bo, Zhang Yi, Zhang Jianli, Guo Yiqing, Hu Hongbo Apri for NanJing Meeting
Atmospheric Aerosol Measurements at the Pierre Auger Observatory The Pierre Auger Observatory operates an array of monitoring devices to record the atmospheric.
Ronald Bruijn – 10 th APP Symposium Antares results and status Ronald Bruijn.
Anisotropy of primary cosmic ray flux in Super-Kamiokande Yuichi Oyama (KEK) Vietnam2006 New astronomy using underground cosmic-ray muons.
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
ROCKENBACH, M. 1; DAL LAGO, A. 2; MUNAKATA, K. 3; KATO, C
Multi-TeV  -ray Astronomy with GRAPES-3 Pravata K Mohanty On behalf of the GRAPE-3 collaboration Tata Institute of Fundamental Research, Mumbai Workshop.
The IceCube Neutrino Observatory is a cubic kilometer detector at the geographic South Pole. We give an overview of searches for time-variable neutrino.
AGASA Results Masahiro Teshima for AGASA collaboration
SN 1987A as a Possible Source of Cosmic Rays with E 0 < eV by Yakutsk EAS Array Data A.V. Glushkov, L.T. Ksenofontov, M.I. Pravdin Yu.G. Shafer Institute.
Cosmic rays at sea level. There is in nearby interstellar space a flux of particles—mostly protons and atomic nuclei— travelling at almost the speed of.
21 Sep 2006 Kentaro MIKI for the PHENIX collaboration University of Tsukuba The Physical Society of Japan 62th Annual Meeting RHIC-PHENIX 実験における高横運動量領域での.
Hybrid measurement of CR light component spectrum by using ARGO-YBJ and WFCTA Shoushan Zhang on behalf of LHAASO collaboration and ARGO-YBJ collaboration.
Northern sky Galactic Cosmic Ray anisotropy between TeV with the Tibet Air Shower Array Zhaoyang Feng Institute of High Energy Physics, CAS, China.
EAS Time Structures with ARGO-YBJ experiment 1 - INFN-CNAF, Bologna, Italy 2 - Università del Salento and INFN Lecce, Italy A.K Calabrese Melcarne 1, G.Marsella.
Temporal and spatial structure of the Extensive Air Shower front with the ARGO- YBJ experiment 1 - INFN-CNAF, Bologna, Italy 2 - Università del Salento.
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
Cosmic Rays High Energy Astrophysics
Global Structure of the Inner Solar Wind and it's Dynamic in the Solar Activity Cycle from IPS Observations with Multi-Beam Radio Telescope BSA LPI Chashei.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
High-energy Electron Spectrum From PPB-BETS Experiment In Antarctica Kenji Yoshida 1, Shoji Torii 2 on behalf of the PPB-BETS collaboration 1 Shibaura.
NEVOD-DECOR experiment: results and future A.A.Petrukhin for Russian-Italian Collaboration Contents MSU, May 16, New method of EAS investigations.
A Northern Sky Survey for Both TeV CR anisotropy and  -ray Sources with Tibet Air Shower Array Hongbo Hu For Tibet AS  collaboration.
Study on the Possible Contribution of Galactic Cosmic Rays to the Galactic Halo Magnetic Field Xiaobo Qu, Yi Zhang, Liang Xue* Cheng Liu, Hongbo Hu Institute.
HES-HKS & KaoS meeting. Contents Different distorted initial matrices Distorted matrix sample 6 (dist6) Distorted matrix sample 7 (dist7) Distorted matrix.
2011, 10th AprilIII Fermi symposium , 10th AprilIII Fermi symposium2.
AGASA results Anisotropy of EHE CR arrival direction distribution M. Teshima ICRR, U of Tokyo.
32 nd ICRC –Beijing – August 11-18, 2011 Silvia Vernetto IFSI-INAF Torino, ITALY On behalf of the ARGO-YBJ collaboration Observation of MGRO J with.
Cosmic-ray anisotropies observed by the ARGO-YBJ experiment presented by R. Iuppa University of Rome Tor Vergata INFN, sez.ne “Tor Vergata” on behalf of.
Time Dependence of Loss-Cone Amplitude measured with the Tibet Air-Shower Array Saito Toshiharu on behalf of the Tibet AS  experiment.
On temporal variations of the
Measurement of high energy cosmic rays by the new Tibet hybrid experiment J. Huang for the Tibet ASγCollaboration a a Institute of high energy physics,
On behalf of the ARGO-YBJ collaboration
Weak Lensing Flexion Alalysis by HOLICs
Search for Cosmic Ray Anisotropy with the Alpha Magnetic Spectrometer on the International Space Station G. LA VACCA University of Milano-Bicocca.
L/E analysis of the atmospheric neutrino data from Super-Kamiokande
The Status of the ARGO Experiment at YBJ
Comparison Of High Energy Hadronic Interaction Models
observations of the muon bundles with IceCube
Comparison Of High Energy Hadronic Interaction Models
Anisotropy of Primary Cosmic Rays
Examine solar cycle variations (11/22 yrs.) of DA in SO & SI times.
Study on Large-Scale CR Anisotropy with ARGO-YBJ experiment
Presentation transcript:

(Tibet AS collaboration) 6th IGPP meeting in Hawaii: March 21, 2007 Implication of the sidereal anisotropy of ~10 TeV (1013 eV) cosmic ray intensity observed with the Tibet III air shower array M. Amenomori, S. Ayabe, X. J. Bi, D. Chen, S. W. Cui, Danzengluobu, L. K. Ding, X. H. Ding, C. F. Feng, Zhaoyang Feng, Z. Y. Feng, X. Y. Gao, Q. X. Geng, H. W. Guo, H. H. He, M. He, K. Hibino, N. Hotta, Haibing Hu, H. B. Hu, J. Huang, Q. Huang, H. Y. Jia, F. Kajino, K. Kasahara, Y. Katayose, C. Kato, K. Kawata, Labaciren, G. M. Le, A. F. Li, J. Y. Li, Y.-Q. Lou, H. Lu, S. L. Lu, X. R. Meng, K. Mizutani, J. Mu, K. Munakata, A. Nagai, H. Nanjo, M. Nishizawa, M. Ohnishi, I. Ohta, H. Onuma, T. Ouchi, S. Ozawa, J. R. Ren, T. Saito, T. Y. Saito, M. Sakata, T. K. Sako, T. Sasaki, M. Shibata, A. Shiomi, T. Shirai, H. Sugimoto, M. Takita, Y. H. Tan, N. Tateyama, S. Torii, H. Tsuchiya, S. Udo, B. Wang, H. Wang, X. Wang, Y. G. Wang, H. R. Wu, L. Xue, Y. Yamamoto, C. T. Yan, X. C. Yang, S. Yasue, Z. H. Ye, G. C. Yu, A. F. Yuan, T. Yuda, H. M. Zhang, J. L. Zhang, N. J. Zhang, X. Y. Zhang, Y. Zhang, Yi Zhang, Zhaxisangzhu and X. X. Zhou (Tibet AS collaboration) 85 people from 25 institutes in Japan and China

Cosmic ray observation with AS array Neutron monitor Muon detector Air shower array 1ry g Ground-based detectors measure byproducts of the interaction of primary cosmic rays (mostly protons) with Earth’s atmosphere. AS array measures electromagnetic component in the cascade shower. AS array also responds to 1ry g-rays, while the muon detector respond only to 1ry protons.

Tibet ASγ experiment Tibet@China Yangbajing 90゜53E, 30゜11N 4,300 m a.s.l. Lasa ~300 km Tibet@China 無断転載禁止 http://www5b.biglobe.ne.jp/~Ken-Road/Tibet/Map/Lhasa.html http://www3.aa.tufs.ac.jp/%7Ehoshi/cgi-bin/dictionary/TJmap.html

Resolving the incident direction trigger rate ~ 680 Hz angular res. ~ 1 533 counters of 0.5 m2 each placed on a 7.5mx7.5m square grid 22,050 m2 detection area Achieved… Highest statistics & Best angular resolution in multi-TeV region

Sidereal anisotropy on the spinning Earth d=30.1o d=90o The zenith direction at Yanbajing is d=30.1o. ● With the spin of Earth, the zenith direction travels along d=30.1o . ● Fixed direction in the horizontal coordinate travels along d=const. for 360o of right ascension once every one sidereal day. ● ● AS flux varies for more than an order of magnitude with the zenith angle due to the different atmospheric depth. The average flux in each d-band is subtracted.

Bi-directional + Uni-directional 2D sky map of CR intensity by Tibet AS (Amenomori et al., Science, 314, 2006) Geographical equator Galactic plane right ascension (º) declination (º) Nose direction “Normalized” intensity map (5°x5° pixels) ~120° 90° < 120° < 180° Bi-directional + Uni-directional Significance map

LIC (Local Interstellar Cloud) RL~ 0.01pc (for 10TeV p in 1mG) Dist. to LIC boundary ~26km/s3000y =0.08pc Probably within 1 m.f.p. in the weak scattering regime T~7000K, nH~0.1/cc Ionization rate~0.52 H Redfield & Linsky, ApJ, 535, 2000 2 pc l=90 He Lallement’s Interstellar B plane (Lallement et al., Science, 307, 2005) l=180 GC lB= 205~240 bB= -38~-60 (or the opposite direction) l=270

LIMC (Local Interstellar Magnetic Cloud) model If cosmic ray density (n) is lower inside LIC than outside…. LIC n High Uni-directional flow (Bxn) n Low G cloud n 26 km/s Bi-directional flow Interstellar B 29 km/s

Best-fitting (preliminary) (DI/I)cal = a1cos1(a1, d1) : Uni-directional + a2+cos2 2(a2, d2) for 0 2/2 + a2-cos2 2(a2, d2) for /2 2  1, 2 : angles from reference axes First choose orientations of reference axes… a1, a2 & d2 (or d1): (a2, d2)  (a1, d1) then a1, a2+ & a2- are given by linear LSM. d.o.f. with 6 free parameters is large as… 90x360/(5x5)-6=1,290 : Bi-directional Result: Uni-directional Bi-directional a1=0.0016, a2+=0.0018, a2-=0.0010 a1=27.5, d1=47.5, a2=97.4, d2=-17.5

“Normalized” intensity (average over dec.-band is subtracted) Best-fit intensity distribution “Normalized” intensity (average over dec.-band is subtracted) Original intensity Uni-direct. + Bi-direct. = Sum

Best-fit performance observation model residual Mrk421 Crab Cygnus region observation model residual (obs.-model)/error Large-scale feature is well reproduced. 2/d.o.f. = 2.493 (“Trough”, “Peak” and broad enhancement around Cygnus region) “Skewed” profile of “Peak” needs to be modeled further.

Comparison with UG-m in two-hemispheres UG-m in Japan V (35°N) Tibet AS UG-m in Tasmania N (4°N) UG-m in Tasmania V (36°S) Tibet AS experiment cannot observe southern hemisphere. : LIMC model (Tibet AS) UG-m @0.5 TeV Hall et al., JGR, 103, 1998 &104, 1999) : Lallement’s B Best-fit B direction may be different when unbiased, by properly taking account of the data in southern hemisphere.

Summary Original intensity map (in galactic coordinate) + - + Large-scale feature of 2D-sky map is well reproduced by the model. (“Trough”, “Peak” and broad enhancement around Cygnus region) “Skewed” profile of the observed “Peak” needs to be modeled further. The model may be biased by the lack of southern hemisphere data. Best-fit B-orientation is in a reasonable agreement with Lallement et al. (2005). Original intensity map (in galactic coordinate) + - -0.0016 +0.0016 +0.0018 +0.0010 l (°) b (°) : heliotail (He) : Lallement’s B + : B in this model (bi-directional) White lines show contour map of the distance to LIC boundary by Redfield & Linsky (2000).

Large-scale distribution of proton intensity (not -ray) Comparison with UG- observations Two-hemisphere UG- observations @~0.5 TeV (Hall et al., JGR, 103, 1998 &104, 1999) (5°x5° pixels) (15°x15° pixels) Large-scale distribution of proton intensity (not -ray) Deep UG- observations by Super Kamiokande @~10 TeV Guillian et al., PRD, in press (2007)

Energy dependence No significant E-dependence up to ~100 TeV 4 TeV 6 “Normalized” intensity Significance 4 TeV 6 No significant E-dependence up to ~100 TeV 12 50 100

Local sidereal time (hour) 銀河異方性と恒星時日周変動 d=90o d=30.1o 長期安定稼動 大気効果の補正 (等天頂角法、E-W法) 系統誤差  0.01%を実現 0 6 12 18 24 Local sidereal time (hour) 恒星時日周変動 赤緯依存性を観測できない。 (自転軸に平行な流れは検出不可)

Energy responses to 1-ry CRs AS(Tibet III)

E-spectra of SDV amplitude (Before Tibet III) Nagashima, Fujimoto & Jacklyn (1998) Loss-cone Tail-In Both TI & LC @~300GeV No significant TI @10TeV TI has a soft E-spectrum J/J~γE/E with const. E ⇒ accl. in heliotail? Tail-In Loss-cone

Tibet III results (AS@10TeV) Amenomori et al. (ApJL, 626, 2005) Tibet III all-dec. is consistent with Nor. TI seen in the south TI phase shifts earlier in south (amp. larger)

Lallement et al. (2004) Tibet AS 28±15° 27° Gurnett et al. (2006)

gal. North gal. East gal. East gal. center

Positive (qA>0) Negative (qA<0) 0.5 TV 1 TV 10 TV (meridian) (equatorial) (meridian) (equatorial) 0.5 TV 1 TV 10 TV