Atomic Spectra & Doppler Shift. Demos for Optics from last time Optical Board –Lens & mirror –Kepler & Galileo Telescope (inverts/does not) –Eye: normal,

Slides:



Advertisements
Similar presentations
Astronomy Notes to Accompany the Text Astronomy Today, Chaisson, McMillan Jim Mims.
Advertisements

Universe Eighth Edition Universe Roger A. Freedman William J. Kaufmann III CHAPTER 5 The Nature of Light CHAPTER 5 The Nature of Light.
Astronomy 201 Classical and Modern Astronomy Week 5 Slide Set 1 TAKE HOME TEST 3 HANDOUT TODAY! T3 & ADLER REPORTS DUE in 3 WKS on April 11. HW5 is due.
Blackbody Radiation. Blackbody = something that absorbs all electromagnetic radiation incident on it. A blackbody does not necessarily look black. Its.
The Nature of Light Chapter Five.
Radiation and Spectra Chapter 5
Chapter 4 The Origin and Nature of Light
Chapter 5: Light: The Cosmic Messenger. What is Light? Light is radiative energy Energy is measured in Joules Power is measured in Watts 1 watt = 1 joule/s.
Electromagnetic Radiation Electromagnetic radiation - all E-M waves travel at c = 3 x 10 8 m/s. (Slower in water, glass, etc) Speed of light is independent.
Astronomy Picture of the Day. Why Can We See Each Other? Light emitted from other sources is reflected off of us. We don’t radiate in the visible part.
Test #1, Wednesday, Feb 10 I will post a review for Test 1 in the A101 homepage under the link to “Lectures” this week. I will tell you the topics to review.
Astronomy Picture of the Day. Possible First Pic of Extrasolar Planet
Astronomy Picture of the Day. Why Can We See Each Other? Light emitted from other sources is reflected off of us. We don’t radiate in the visible part.
Making Light How do we make light?. Making Light How do we make light? –Heat and Light: Incandescent Lighting (3-5% efficient) –Atoms and Light: Fluorescent.
Quiz 1 Each quiz sheet has a different 5-digit symmetric number which must be filled in (as shown on the transparency, but NOT the same one!!!!!) Please.
© 2004 Pearson Education Inc., publishing as Addison-Wesley Orbital Energy and Escape Velocity orbital energy = kinetic energy + gravitational potential.
The Nature of Light Chapter Five. ASTR 111 – 003 Fall 2007 Lecture 05 Oct. 01, 2007 Introducing Astronomy (chap. 1-6) Introduction To Modern Astronomy.
The Nature of Light Chapter Five. Guiding Questions 1.How fast does light travel? How can this speed be measured? 2.Why do we think light is a wave? What.
Electromagnetic Radiation
© 2010 Pearson Education, Inc. Light and Matter: Reading Messages from the Cosmos.
CHAPTER 4: Visible Light and Other Electromagnetic Radiation.
Blackbody Radiation & Atomic Spectra. “Light” – From gamma-rays to radio waves The vast majority of information we have about astronomical objects comes.
The Electromagnetic Spectrum
Stellar Parallax & Electromagnetic Radiation. Stellar Parallax Given p in arcseconds (”), use d=1/p to calculate the distance which will be in units “parsecs”
Chapter 4 Spectroscopy.
Properties of Matter Our goals for learning: What is the structure of matter? What are the phases of matter How is energy stored in atoms?
Stars and Galaxies 28.1 A Closer Look at Light Chapter 28.
Light as Messenger.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
CHAPTER 4: Visible Light and Other Electromagnetic Radiation.
Donna Kubik PHYS162 Fall, Because of its electric and magnetic properties, light is called electromagnetic radiation. It consists of perpendicular,
Lecture 12 ASTR 111 – Section 002.
Lecture 9 Stellar Spectra
Light and Matter Astronomy 315 Professor Lee Carkner Lecture 6.
© 2004 Pearson Education Inc., publishing as Addison-Wesley 6. Light: The Cosmic Messenger.
How to Make Starlight (part 1) Chapter 7. Origin of light Light (electromagnetic radiation) is just a changing electric and magnetic field. Changing electric.
1 Nature of Light Wave Properties Light is a self- propagating electro- magnetic wave –A time-varying electric field makes a magnetic field –A time-varying.
READING Unit 22, Unit 23, Unit 24, Unit 25. Homework 4 Unit 19, problem 5, problem 7 Unit 20, problem 6, problem 9 Unit 21, problem 9 Unit 22, problem.
Light hits Matter: Refraction Light travels at different speeds in vacuum, air, and other substances When light hits the material at an angle, part of.
CHAPTER 4: Visible Light and Other Electromagnetic Radiation.
Spectra What determines the “color” of a beam of light? The answer is its frequency, or equivalently, its wavelength. We see different colors because.
Oct. 11, Review: BB radiation enables measure of both stellar temperature T, and surface flux, F s The shift of the peak λ, to have a maximum flux.
Light, Color, Spectral Lines Spectrum of light Photon energy Atomic structure Spectral lines Elements in stars How the eye sees color Temperature and color/spectrum.
Starlight and Atoms Chapter 6. The Amazing Power of Starlight Just by analyzing the light received from a star, astronomers can retrieve information about.
Homework 4 Unit 21 Problem 17, 18, 19 Unit 23 Problem 9, 10, 13, 15, 17, 18, 19, 20.
Blackbody Spectrum Remember that EMR is characterized by wavelength (frequency) Spectrum: distribution of wavelength (or frequency) of some EMR Blackbody:
The Nature of Light Chapter Five. Introducing Astronomy (chap. 1-6) Introduction To Modern Astronomy I Ch1: Astronomy and the Universe Ch2: Knowing the.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 2 Light and Matter.
Lecture 10: Light & Distance & Matter Astronomy 1143 – Spring 2014.
Light and Matter Astronomy 315 Professor Lee Carkner Lecture 6.
A Brief Review of “Matter”. Atom nucleus electron e-e- (proton,neutrons) p+p+ n ● 10,000,000 atoms can fit across a period in your textbook. ● The nucleus.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
Kirchhoff’s Laws: Dark Lines
Chapter 5 Light: The Cosmic Messenger. 5.1Basic Properties of Light and Matter Light: electromagnetic waves 1. Velocity (c = speed of light), wavelength.
Spectroscopy and Atoms
Universe Tenth Edition Chapter 5 The Nature of Light Roger Freedman Robert Geller William Kaufmann III.
Electromagnetic Radiation, Atomic Structure & Spectra.
NATS From the Cosmos to Earth Light as a Wave For a wave, its speed: s = l x f But the speed of light is a constant, c. For light: l x f = c The.
E2 Stellar radiation and stellar types
Cool, invisible galactic gas (60 K, f peak in low radio frequencies) Dim, young star (600K, f peak in infrared) The Sun’s surface (6000K, f peak in visible)
The Solar System Lesson2 Q & A
Atoms and Spectra.
Spectroscopy and Atoms
Doppler Shift and Stellar Magnitudes
Chapter 4.
Stars and Galaxies Lesson2 Q & A
Chapter 3 Review Worksheet
The Nature of Light Chapter Five.
5.4 Learning from Light Our goals for learning
Electromagnetic Radiation
Presentation transcript:

Atomic Spectra & Doppler Shift

Demos for Optics from last time Optical Board –Lens & mirror –Kepler & Galileo Telescope (inverts/does not) –Eye: normal, near, far sighted –Prism: different color (red/green)  different angle

iSkylab Stage 2 How to estimate the period of the “second” motion (seasonal or montly) –Sun: we are measuring the decrease of altitude per day. Expect: 4 x 23.5 deg = 97 deg Example: you measured 0.5 deg/ day = 365*0.5 deg/year –Moon: either same as sun, or, if you measured motion with respect to stars, e.g. 10 deg/ day = 300 deg/month

Measuring Temperatures Find maximal intensity  Temperature (Wien’s law) Identify spectral lines of ionized elements  Temperature

Color of a radiating blackbody as a function of temperature Think of heating an iron bar in the fire: red glowing to white to bluish glowing

Spectral Lines – Fingerprints of the Elements Can use this to identify elements on distant objects! Different elements yield different emission spectra

Kirchhoff’s Laws: Dark Lines Cool gas absorbs light at specific frequencies  “the negative fingerprints of the elements”

Kirchhoff’s Laws: Bright lines Heated Gas emits light at specific frequencies  “the positive fingerprints of the elements”

Kirchhoff’s Laws 1.A luminous solid or liquid (or a sufficiently dense gas) emits light of all wavelengths: the black body spectrum 2.Light of a low density hot gas consists of a series of discrete bright emission lines: the positive “fingerprints” of its chemical elements! 3.A cool, thin gas absorbs certain wavelengths from a continuous spectrum  dark absorption ( “Fraunhofer”) lines in continuous spectrum: negative “fingerprints” of its chemical elements, precisely at the same wavelengths as emission lines.

Spectral Lines Origin of discrete spectral lines: atomic structure of matter Atoms are made up of electrons and nuclei –Nuclei themselves are made up of protons and neutrons Electrons orbit the nuclei, as planets orbit the sun Only certain orbits allowed  Quantum jumps!

The energy of the electron depends on orbit When an electron jumps from one orbital to another, it emits (emission line) or absorbs (absorption line) a photon of a certain energy The frequency of emitted or absorbed photon is related to its energy E = h f (h is called Planck’s constant, f is frequency)

Demonstration Gas Lamps Which one is He, which is H? Combined, you are looking at 99% of the (non-dark) matter content of the universe!

Energy & Power Units Energy has units Joule (J) Rate of energy expended per unit time is called power, and has units Watt (W) Example: a 100 W = 100 J/s light bulb emits 100 J of energy every second Nutritional Value: energy your body gets out of food, measured in Calories = 1000 cal = 4200 J Luminosity is the same as power radiated

Stefan’s Law A point on the Blackbody curve tells us how much energy is radiated per frequency interval Question: How much energy is radiated in total, i.e. how much energy does the body lose per unit time interval? Stefan(-Boltzmann)’s law: total energy radiated by a body at temperature T per second: P = A σ T 4 σ = 5.67 x W/(m 2 K 4 )

Example: Stefan-Boltzmann Law Sun T=6000K, Earth t=300K (or you!) How much more energy does the Sun radiate per time per unit area? Stefan: Power radiated is proportional to the temperature (in Kelvin!) to the fourth power Scales like the fourth power! Factor f=T/t=20, so f 4 =20 4 =2 4 x10 4 =16x10 4  160,000 x

Example: Wien’s Law Sun T=6000K, Earth t=300K (or you!) The Sun is brightest in the visible wave lengths (500nm). At which wave lengths is the Earth (or you) brightest? Wien: peak wave length is proportional to temperature itself  Scales linearly! Factor f=T/t=20, so f 1 =20 1 =20, so peak wavelength is 20x500nm=10,000 nm = 10 um Infrared radiation!

Homework Questions Boltzmann: Scaling: area = R^2, T^4

Activity: Black Body Radiation Pick up a worksheet Form a group of 3-4 people Work on the questions on the sheet Fill out the sheet and put your name on top Hold on to the sheet until we’ve talked about the correct answers Hand them in at the end of the lecture or during the break I’ll come around to help out !

Doppler Shift From Wikipedia

Doppler Shift Can use the Doppler shift to determine radial velocity of distant objects relative to us Transverse velocity can be measured from the motion of stars with respect to back- ground over a period of years –(Halley 1718: Sirius, Arcturus, Aldebaran moved since Hipparchus, 1850 years ago)

Not Used

Homework: Doppler Shift of Hydrogen spectrum The discrepancy between the wavelength of a line measured in the lab versus measured on an object is proportional to the velocity of the object Apparent/ true wavelength = 1+ velocity/c Example: –Observed(or apparent): 698 nm –Actual(or true or lab) wavelength: 656.3nm –velocity = (698nm/656.3nm -1) c = km/s

Group Activity: Estimate Power Estimate how much energy you radiate per second Estimate how many candy bars you would have to eat per day to be able to do that Ponder the paradox

Doppler Shift and Stellar Magnitudes