商業智慧實務 Practices of Business Intelligence 1 1032BI01 MI4 Wed, 9,10 (16:10-18:00) (B130) 商業智慧導論 (Introduction to Business Intelligence) Min-Yuh Day 戴敏育.

Slides:



Advertisements
Similar presentations
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Advertisements

Case Study for Information Management 資訊管理個案
HSR 課程介紹. 指定用書 Health Services Research Method Leiyu Shi 2008.
Chapter 0 Computer Science (CS) 計算機概論 教學目標 瞭解現代電腦系統之發展歷程 瞭解電腦之元件、功能及組織架構 瞭解電腦如何表示資料及其處理方式 學習運用電腦來解決問題 認知成為一位電子資訊人才所需之基本條 件 認知進階電子資訊之相關領域.
元智大學應用外語系碩士班 Department of Foreign Languages and Applied Linguistics Master’s Program.
統計資訊軟體應用 授課者:蔡桂宏 系別:應用統計資訊系 職務:專任副教授 連絡: 轉 3485 系辦
物流通關專業教室 (052) 國貿實務專業教室 (054) 企業資源整合專業教室 (055) 整合各專業教室資訊進行 即時動態及異常管理 (051) 貿易運籌研訓中心 專業實習、 、 師生研究討論 、、 、、 海關模擬系統、貨況追蹤、貨物 進出倉管理、海空運通關承攬、 通關自動化作業等相關模組 全球運籌決策中心.
電子計算機概論電子計算機概論 教科書 計算機概論 Introduction to Computers 原著: Peter Norton 審閱: 陳正雄‧趙立本‧簡文山‧林碧蘭 編譯:普羅數位科技 總審閱:林志敏 NT 590 洽助教.
論文研討 ( 一 ) B 組 課程簡介 劉美纓 / 尚榮安 / 胡凱傑 2009/09/17. 一、課程基本資料 科目名稱: ( 中文 ) 論文研討(一)B組 ( 英文 ) SEMINARS (I) 開課學期: 98 學年度第 1 學期 開課班級:企碩一 學 分 數: 2 學分 星期節次: 四 34.
1 Syllabus Computer Network 計算機網路 賴秉樑 Dept. of Electronic Engineering National Chin-Yi University of Technology Spring 2008.
大華技術學院九十三學年度 下學期 資工系資料結構教學大綱 吳弘翔. Wu Hung-Hsiang2 科目名稱:資料結構 適用班別:進修部二年級 授課老師:吳弘翔 修別:必修 老師信箱:
大華技術學院九十三學年度 資工系計算機概論教學大綱 吳弘翔. Wu Hung-Hsiang2 科目名稱:計算機概論與實習 適用班別:夜資工技一A 授課老師:吳弘翔 學分數: 4 修別:必修 老師信箱:
課 程 綱 要 一、【開課系所】物理 學系(所) 二、【開課年級】大二 三、【修別】: 必 修 四、【科目名稱】 (中文): 電磁學 (一)
1 CHAOYANG UNIVERSITY OF TECHNOLOGY 朝 陽 科 技 大 學 研 究 發 展 處 專案計畫審查辦法說明會 報告人:洪處長弘祈.
教材名稱:網際網路安全之技術及其應用 (編號: 41 ) 計畫主持人:胡毓忠 副教授 聯絡電話: 教材網址: 執行單位: 政治大學資訊科學系.
1 高等演算法 授課老師 : 陳建源 研究室 : 法 401 網站
Chapter 0 Computer Science (CS) 計算機概論 General Goals To give you a solid, broad understanding of how a computing system works To develop an appreciation.
大華技術學院九十五學年度 資工系計算機概論教學大綱 吳弘翔. Wu Hung-Hsiang2 科目名稱:計算機概論與實習 授課老師:吳弘翔 學分數: 4 修別:必修 老師信箱:
高等行動通訊課程簡介 許智舜 Office: S515 Tel:3351.
1 高等管理資訊系統. 2 授課教師 : 王耀德 研究室 : 主顧 686 電話 : (04) # 課輔時間 Wednesday 09:00~13:00 介紹.
商業智慧實務 Practices of Business Intelligence BI04 MI4 Wed, 9,10 (16:10-18:00) (B113) 資料倉儲 (Data Warehousing) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
商業智慧實務 Practices of Business Intelligence
Case Study for Information Management 資訊管理個案
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Social Media Marketing Research 社會媒體行銷研究 SMMR01 TMIXM1A Thu 7,8 (14:10-16:00) U505 Course Orientation for Social Media Marketing Research Min-Yuh.
Business Intelligence 商業智慧 BI01 IM EMBA Fri 12,13,14 (19:20-22:10) D502 Introduction to Business Intelligence 商業智慧導論 Min-Yuh Day 戴敏育 Assistant Professor.
Case Study for Information Management 資訊管理個案 CSIM4B06 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Foundations of Business Intelligence - Database.
Social Media Marketing Research 社會媒體行銷研究 SMMR06 TMIXM1A Thu 7,8 (14:10-16:00) L511 Measuring the Construct Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
企業網路系統研究 (Enterprise Networking Systems Research) (VMware vSphere) VM01 MI4 Thu 9,10 (16:10-18:00) (B310) Course Introduction ( 課程介紹 ) Min-Yuh Day.
社會媒體服務專題 Special Topics in Social Media Services 淡江大學 淡江大學 資訊管理學系 資訊管理學系 Dept. of Information ManagementDept. of Information Management, Tamkang UniversityTamkang.
商業智慧實務 Practices of Business Intelligence
商業智慧實務 Practices of Business Intelligence BI03 MI4 Wed, 9,10 (16:10-18:00) (B113) 企業績效管理 (Business Performance Management) Min-Yuh Day 戴敏育 Assistant.
Business Intelligence Trends 商業智慧趨勢 BIT08 MIS MBA Mon 6, 7 (13:10-15:00) Q407 商業智慧導入與趨勢 (Business Intelligence Implementation and Trends) Min-Yuh.
Social Media Management 社會媒體管理 SMM01 TMIXM1A Fri. 7,8 (14:10-16:00) L215 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Case Study for Information Management 資訊管理個案 CSIM4B07 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Telecommunications, the Internet, and Wireless.
Social Media Marketing 社群網路行銷 SMM08 TLMXJ1A (MIS EMBA) Mon 12,13,14 (19:20-22:10) D504 社群網路行銷計劃 (Social Media Marketing Plan) Min-Yuh Day 戴敏育 Assistant.
Special Topics in Social Media Services 社會媒體服務專題 1 992SMS07 TMIXJ1A Sat. 6,7,8 (13:10-16:00) D502 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information.
Data Mining 資料探勘 Introduction to Data Mining 資料探勘導論 Min-Yuh Day 戴敏育
商業智慧實務 Practices of Business Intelligence BI01 MI4 Wed, 9,10 (16:10-18:00) (B113) 商業智慧導論 (Introduction to Business Intelligence) Min-Yuh Day 戴敏育.
Social Media Marketing Management 社會媒體行銷管理 SMMM12 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 確認性因素分析 (Confirmatory Factor Analysis) Min-Yuh Day 戴敏育.
Social Media Marketing Analytics 社群網路行銷分析 SMMA04 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 測量構念 (Measuring the Construct) Min-Yuh Day 戴敏育.
商業智慧實務 Practices of Business Intelligence BI06 MI4 Wed, 9,10 (16:10-18:00) (B130) 資料科學與巨量資料分析 (Data Science and Big Data Analytics) Min-Yuh Day 戴敏育.
Case Study for Information Management 資訊管理個案 CSIM4B08 TLMXB4B Thu 8, 9, 10 (15:10-18:00) B508 Securing Information System: 1. Facebook, 2. European.
Web Mining ( 網路探勘 ) WM01 TLMXM1A Wed 8,9 (15:10-17:00) U705 Introduction to Web Mining ( 網路探勘導論 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept.
Case Study for Information Management 資訊管理個案 CSIM4B03 TLMXB4B (M1824) Tue 3,4 (10:10-12:00) L212 Thu 9 (16:10-17:00) B601 Global E-Business and Collaboration:
商業智慧實務 Practices of Business Intelligence
Business Intelligence Trends 商業智慧趨勢 BIT01 MIS MBA Mon 6, 7 (13:10-15:00) Q407 Course Orientation for Business Intelligence Trends 商業智慧趨勢課程介紹 Min-Yuh.
Data Mining 資料探勘 DM04 MI4 Wed, 6,7 (13:10-15:00) (B216) 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Social Media Marketing Management 社會媒體行銷管理 SMMM01 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 Course Orientation of Social Media Marketing Management.
Social Media Marketing Research 社會媒體行銷研究 SMMR04 TMIXM1A Thu 7,8 (14:10-16:00) L511 Marketing Research Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
Data Mining 資料探勘 DM01 MI4 Wed, 6,7 (13:10-15:00) (B216) Introduction to Data Mining ( 資料探勘導論 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of.
Data Mining 資料探勘 Introduction to Data Mining (資料探勘導論) Min-Yuh Day 戴敏育
Case Study for Information Management 資訊管理個案
商業智慧 Business Intelligence BI04 IM EMBA Fri 12,13,14 (19:20-22:10) D502 資料倉儲 (Data Warehousing) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept.
Big Data Mining 巨量資料探勘 DM01 MI4 (M2244) (3094) Tue, 3, 4 (10:10-12:00) (B216) Course Orientation for Big Data Mining ( 巨量資料探勘課程介紹 ) Min-Yuh Day 戴敏育.
Social Computing and Big Data Analytics 社群運算與大數據分析
Case Study for Information Management 資訊管理個案 CSIM4C01 TLMXB4C Mon 8, 9, 10 (15:10-18:00) B602 Introduction to Case Study for Information Management.
Case Study for Information Management 資訊管理個案 CSIM4C01 TLMXB4C (M1824) Tue 2 (9:10-10:00) L212 Thu 7,8 (14:10-16:00) B601 Introduction to Case Study.
社群網路行銷管理 Social Media Marketing Management SMMM01 MIS EMBA (M2200) (8615) Thu, 12,13,14 (19:20-22:10) (D309) 社群網路行銷管理課程介紹 (Course Orientation for.
Social Computing and Big Data Analytics 社群運算與大數據分析
Case Study for Information Management 資訊管理個案 CSIM4B01 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Introduction to Case Study for Information Management.
Big Data Mining 巨量資料探勘 DM05 MI4 (M2244) (3094) Tue, 3, 4 (10:10-12:00) (B216) 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
Social Computing and Big Data Analytics 社群運算與大數據分析
Course Orientation for Big Data Mining (巨量資料探勘課程介紹)
Case Study for Information Management 資訊管理個案
分群分析 (Cluster Analysis)
商業智慧實務 Practices of Business Intelligence
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Presentation transcript:

商業智慧實務 Practices of Business Intelligence BI01 MI4 Wed, 9,10 (16:10-18:00) (B130) 商業智慧導論 (Introduction to Business Intelligence) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang University 淡江大學 淡江大學 資訊管理學系 資訊管理學系 tku.edu.tw/myday/ Tamkang University

淡江大學 103 學年度第 2 學期 課程教學計畫表 Spring 2015 ( ) 課程名稱:商業智慧實務 (Practices of Business Intelligence) 授課教師:戴敏育 (Min-Yuh Day) 開課系級:資管四 P (TLMXB4P) 開課資料:選修 單學期 2 學分 (2 Credits, Elective) 上課時間:週三 9,10 (Wed 16:10-18:00) 上課教室: B130 2

課程簡介 本課程介紹商業智慧 (Business Intelligence) 的 基礎概念及技術實務。 課程內容包括 – 商業智慧導論、 – 管理決策支援系統與商業智慧、 – 企業績效管理、 – 資料倉儲、 – 商業智慧的資料探勘、 – 資料科學與巨量資料分析、 – 文字探勘與網路探勘、 – 意見探勘與情感分析、 – 社會網路分析。 3

Course Introduction This course introduces the fundamental concepts and technology practices of business intelligence. Topics include – Introduction to Business Intelligence, – Management Decision Support System and Business Intelligence, – Business Performance Management, – Data Warehousing, – Data Mining for Business Intelligence, – Data Science and Big Data Analytics, – Text and Web Mining, – Opinion Mining and Sentiment Analysis, – Social Network Analysis. 4

課程目標 瞭解及應用 商業智慧 基本概念 與 技術實務 5

Objective Understand and apply the fundamental concepts and technology practices of business intelligence. 6

週次 (Week) 日期 (Date) 內容 (Subject/Topics) /02/25 商業智慧導論 (Introduction to Business Intelligence) /03/04 管理決策支援系統與商業智慧 (Management Decision Support System and Business Intelligence) /03/11 企業績效管理 (Business Performance Management) /03/18 資料倉儲 (Data Warehousing) /03/25 商業智慧的資料探勘 (Data Mining for Business Intelligence) /04/01 教學行政觀摩日 (Off-campus study) /04/08 商業智慧的資料探勘 (Data Mining for Business Intelligence) /04/15 資料科學與巨量資料分析 (Data Science and Big Data Analytics) 課程大綱 ( Syllabus) 7

週次 日期 內容( Subject/Topics ) /04/22 期中報告 (Midterm Project Presentation) /04/29 期中考試週 (Midterm Exam) /05/06 文字探勘與網路探勘 (Text and Web Mining) /05/13 意見探勘與情感分析 (Opinion Mining and Sentiment Analysis) /05/20 社會網路分析 (Social Network Analysis) /05/27 期末報告 (Final Project Presentation) /06/03 畢業考試週 (Final Exam) 課程大綱 ( Syllabus) 8

教材課本與參考書籍 教材課本 (Textbook) :講義 (Slides) 參考書籍 (References) : Decision Support and Business Intelligence Systems, Ninth Edition, Efraim Turban, Ramesh Sharda, Dursun Delen, 2011, Pearson 決策支援與企業智慧系統,九版, Efraim Turban 等著, 李昇暾審定, 2011 ,華泰 9

作業與學期成績計算方式 作業篇數 – 3 篇 學期成績計算方式 –  期中評量: 30 % –  期末評量: 30 % –  其他(課堂參與及報告討論表現): 40 % 10

Team Term Project Term Project Topics – Data mining – Web mining – Business Intelligence – Big Data Analytics 3-4 人為一組 – 分組名單於 2015/03/04 ( 三 ) 課程下課時繳交 – 由班代統一收集協調分組名單 11

Business Pressures–Responses– Support Model Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 12

Data Warehouse Data Mining and Business Intelligence Increasing potential to support business decisions End User Business Analyst Data Analyst DBA Decision Making Data Presentation Visualization Techniques Data Mining Information Discovery Data Exploration Statistical Summary, Querying, and Reporting Data Preprocessing/Integration, Data Warehouses Data Sources Paper, Files, Web documents, Scientific experiments, Database Systems 13 Source: Han & Kamber (2006)

Business Intelligence (BI) BI is an umbrella term that combines architectures, tools, databases, analytical tools, applications, and methodologies Like DSS, BI a content-free expression, so it means different things to different people BI's major objective is to enable easy access to data (and models) to provide business managers with the ability to conduct analysis BI helps transform data, to information (and knowledge), to decisions and finally to action Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 14

A Brief History of BI The term BI was coined by the Gartner Group in the mid-1990s However, the concept is much older – 1970s - MIS reporting - static/periodic reports – 1980s - Executive Information Systems (EIS) – 1990s - OLAP, dynamic, multidimensional, ad-hoc reporting - > coining of the term “BI” – Inclusion of AI and Data/Text Mining capabilities; Web-based Portals/Dashboards – 2010s - yet to be seen Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 15

The Evolution of BI Capabilities Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 16

The Architecture of BI A BI system has four major components – a data warehouse, with its source data – business analytics, a collection of tools for manipulating, mining, and analyzing the data in the data warehouse; – business performance management (BPM) for monitoring and analyzing performance – a user interface (e.g., dashboard) Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 17

A High-Level Architecture of BI Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 18

Components in a BI Architecture The data warehouse is a large repository of well- organized historical data Business analytics are the tools that allow transformation of data into information and knowledge Business performance management (BPM) allows monitoring, measuring, and comparing key performance indicators User interface (e.g., dashboards) allows access and easy manipulation of other BI components Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 19

A Conceptual Framework for DW Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 20

A Taxonomy for Data Mining Tasks Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 21

Social Network Analysis 22 Source:

A Closed-Loop Process to Optimize Business Performance Process Steps 1. Strategize 2. Plan 3. Monitor/analyze 4. Act/adjust Each with its own process steps… Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 23

RFID for Supply Chain BI RFID in Retail Systems Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

Implications of Business and Enterprise Social Networks Business oriented social networks can go beyond “advertising and sales” Emerging enterprise social networking apps: – Finding and Recruiting Workers – Management Activities and Support – Training – Knowledge Management and Expert Location e.g., innocentive.com; awareness.com; Caterpillar – Enhancing Collaboration – Using Blogs and Wikis Within the Enterprise 25 Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

Implications of Business and Enterprise Social Networks Survey shows that best-in-class companies use blogs and wikis for the following applications: – Project collaboration and communication (63%) – Process and procedure document (63%) – FAQs (61%) – E-learning and training (46%) – Forums for new ideas (41%) – Corporate-specific dynamic glossary and terminology (38%) – Collaboration with customers (24%) 26 Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

The Benefits of BI The ability to provide accurate information when needed, including a real-time view of the corporate performance and its parts A survey by Thompson (2004) – Faster, more accurate reporting (81%) – Improved decision making (78%) – Improved customer service (56%) – Increased revenue (49%) Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 27

28 Source:

Business Intelligence Trends 1.Agile Information Management (IM) 2.Cloud Business Intelligence (BI) 3.Mobile Business Intelligence (BI) 4.Analytics 5.Big Data 29 Source:

Business Intelligence Trends: Computing and Service Cloud Computing and Service Mobile Computing and Service Social Computing and Service 30

Business Intelligence and Analytics Business Intelligence 2.0 (BI 2.0) – Web Intelligence – Web Analytics – Web 2.0 – Social Networking and Microblogging sites Data Trends – Big Data Platform Technology Trends – Cloud computing platform 31 Source: Lim, E. P., Chen, H., & Chen, G. (2013). Business Intelligence and Analytics: Research Directions. ACM Transactions on Management Information Systems (TMIS), 3(4), 17

Business Intelligence and Analytics: Research Directions 1. Big Data Analytics – Data analytics using Hadoop / MapReduce framework 2. Text Analytics – From Information Extraction to Question Answering – From Sentiment Analysis to Opinion Mining 3. Network Analysis – Link mining – Community Detection – Social Recommendation 32 Source: Lim, E. P., Chen, H., & Chen, G. (2013). Business Intelligence and Analytics: Research Directions. ACM Transactions on Management Information Systems (TMIS), 3(4), 17

33 Source: Davenport, T. H., & Patil, D. J. (2012). Data Scientist. Harvard business review

Top 10 CIO Technology Priorities in Business Intelligence/Analytics 2. Infrastructure and Data Center 3. Cloud 4. ERP 5. Mobile 6. Digitalization/Digital Marketing 7. Security 8. Networking, Voice & Data 9. CRM 10. Industry-Specific Applications 34 Source: Gartner, January

SAS 與玉山銀行 【大數據數位行銷應用大賽】 35

36 SAS 與玉山銀行 【大數據數位行銷應用大賽】

Summary This course introduces the fundamental concepts and technology practices of business intelligence. Topics include – Introduction to Business Intelligence, – Management Decision Support System and Business Intelligence, – Business Performance Management, – Data Warehousing, – Data Mining for Business Intelligence, – Data Science and Big Data Analytics, – Text and Web Mining, – Opinion Mining and Sentiment Analysis, – Social Network Analysis. 37

Contact Information 戴敏育 博士 (Min-Yuh Day, Ph.D.) 專任助理教授 淡江大學 淡江大學 資訊管理學系 資訊管理學系 電話: #2846 傳真: 研究室: B929 地址: 新北市淡水區英專路 151 號 : 網址: