Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Creating new states of matter:
Relaxation Time Phenomenon & Application
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
1 Trey Porto Joint Quantum Institute NIST / University of Maryland University of Minnesota 26 March 2008 Controlled exchange interactions in a double-well.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Bose-Einstein condensates in random potentials Les Houches, February 2005 LENS European Laboratory for Nonlinear Spectroscopy Università di Firenze J.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
All-optical production of chromium BECs Bessel Engineering of Chromium Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Experimental study of Efimov scenario in ultracold bosonic lithium
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Stability and collapse of a trapped degenerate dipolar Bose or Fermi gas Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade Estadual.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Dipolar chromium BECs, and magnetism
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Simulation of Spin Interference and Echo Effect Abstract Successively jumping across a depolarization resonance twice produces interesting spin dynamics.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Exploring many-body physics with synthetic matter
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Microwave Spectroscopy of the Autoionizing 5d 3/2 n l States of Barium Edward Shuman Tom Gallagher.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Magnetization dynamics in dipolar chromium BECs
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Laboratoire de Physique des Lasers
Novel quantum states in spin-orbit coupled quantum gases
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Spectroscopy of ultracold bosons by periodic lattice modulations
a = 0 Density profile Relative phase Momentum distribution
周黎红 中国科学院物理研究所 凝聚态理论与材料计算实验室 指导老师: 崔晓玲 arXiv:1507,01341(2015)
Chromium Dipoles in Optical Lattices
Presentation transcript:

Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne Crubellier (Laboratoire Aimé Cotton), J. Huckans, M. Gajda A.de Paz (PhD), A. Chotia, A. Sharma, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri (Theory), O. Gorceix (Group leader) Magnetization dynamics of a dipolar BEC in a 3D optical lattice

Dipole-dipole interactions Anisotropic Long range Chromium (S=3): Van-der-Waals plus dipole-dipole interactions R Relative strength of dipole-dipole and Van-der-Waals interactions Cr:

Relative strength of dipole-dipole and Van-der-Waals interactions Stuttgart: d-wave collapse, PRL 101, (2008) See also Er PRL, 108, (2012) See also Dy, PRL, 107, (2012) … and Dy Fermi sea PRL, 108, (2012) … and heteronuclear molecules… Anisotropic explosion pattern reveals dipolar coupling. Stuttgart: Tune contact interactions using Feshbach resonances (Nature. 448, 672 (2007)) BEC collapses Cr: R BEC stable despite attractive part of dipole-dipole interactions

Villetaneuse, PRL 105, (2010) Stuttgart, PRL 95, (2005) Collective excitations Striction Anisotropic speed of sound Bragg spectroscopy Villetaneuse arXiv: (2012) Hydrodynamic properties of a BEC with weak dipole-dipole interactions Interesting but weak effects in a scalar Cr BEC Saddle shape

Polarized (« scalar ») BEC Hydrodynamics Collective excitations, sound, superfluidity Anisotropic Long-ranged R Hydrodynamics: non-local mean-field Magnetism: Atoms are magnets Chromium (S=3): involve dipole-dipole interactions Multicomponent (« spinor ») BEC Magnetism Phases, spin textures…

Focus on : Magnetization dynamics in a 3D optical lattice : - 3 regimes : - B is of the order of the lattice band excitations. Observation of dipolar resonances and of band excitations mediated by dipole interactions. Resonances line-shape is sensitive to the interaction energy in each lattice site, and therefore to on-site number distribution. - B is below the first excitation band : Observation of intersite dynamics, with constant magnetization. -B is very low : spontaneous depolarization.

Observation of spin changing collisions resonances and band excitations: - BEC atom number N=10^4 atoms. - Loaded adiabatically in a 3 D anisotropic optical lattice. Lattice in horizontal plane Typical frequencies:  x = 2  kHz  y = 2  kHz  z = 2  kHz BEC In m=-3 Rf sweep 20 ms T V0 ≈ 25 Er Time sequence : m=+3 +B amplitude and direction is set Stern Gerlach analysis 2 1 Mott distribution With our parameters

Two dipolar relaxation channels for two atoms in m=+3, sharing a same lattice site Here, z is fixed by the B field orientation.

time Atoms remaining in m=-3 If B is higher than the lattice depth (25 Er), dipolar relaxation leads to losses. This case allows to measure the number of site with single occupancy. B is higher than the trap depth B is lower than the trap depth Mott distribution 2 1 Simple measure of site with two atoms or more

If B is lower than the lattice depth : magnetization dynamics with no loss. Dynamics very sensitive to the magnetic field orientation and value.

Observation of resonances due to dipolar relaxation (fixed time T=12 ms) Anisotropic lattice sites

-Two particles in a harmonic anisotropic potential with frequencies  x,  y and  z. - Consider the relative orbital motion -Initial relative orbital motion |n X =0, n Y =0, n Z =0> -Coupling to final relative orbital motion of the atomic pair |nx,ny,nz> Initial Final For channel 2 : B along OX Predication of the resonances position:

Width of the resonances enlarged by the tunneling Lower energy resonance around 50 kHz : -Tunneling very small (100 Hz) -Focus on this lowest energy resonance. Red curve : Lowest energy resonance at  L =  Y Typical frequencies:  x = 2  kHz  y = 2  kHz  z = 2  kHz With (n Y +n Z ) even

Lower energy resonance. Probe of the atom number distribution. Black curve : two atoms / site. Contact interaction : shift and splitting of the resonance. Shift due to contact interactions Molecular Basis :

Note: Lineshape of dipolar resonances probes number of atoms per site 3 and more atoms per sites loaded in lattice for faster loading B(kHz) Fraction in m=+3 Few-body physics ! The 3-atom state which is reached has entangled spin and orbital degrees of freedom Probe of atom squeezing in Mott state spin orbit

Focus on : Magnetization dynamics in a 3D optical lattice : - 3 regimes : - B is of the order of the lattice depth. Observation of dipolar resonances and of band excitations mediated by dipole interactions. Resonances line-shape is sensitive to the interaction energy in each lattice site, and therefore to on-site number distribution. - B is below the first excitation band : Observation of intersite dynamics, with constant magnetization. -B is very low : spontaneous depolarization.

From now on : stay away from dipolar magnetization dynamics resonances, Spin dynamics at constant magnetization (<15mG) New tool : Control the initial state by a tensor light-shift A  polarized laser Close to a J  J transition (100 mW nm) In practice, a  component couples m S states Energy  m S 2 Quadratic light shift effect allows state preparation

Adiabatic state preparation in 3D lattice t quadratic effect  Initiate spin dynamics by removing quadratic effect (2 atomes / site)

 On-site spin oscillations (  250 µs) vary time Load optical lattice quadratic effect (due to contact oscillations) (period  220 µs) Up to now unknown source of damping

Long time-scale spin dynamics in lattice vary time Load optical lattice quadratic effect Sign for intersite dipolar interaction ? (two orders of magnitude slower than on-site dynamics)

Coherent spin oscillations at lower lattice depth The very long time scale excludes on-site oscillations where spin-exchange collisions dominate

Probing spin oscillations from superfluid to Mott Intersite coherent spin oscillation seems to need phase coherence between sites Superfluid more robust Probes magnetism from superfluid to insulator (Probes coherence length) (probes coherent spin oscillations)

Focus on : Magnetization dynamics in a 3D optical lattice : - 3 regimes : - B is of the order of the lattice depth. Observation of dipolar resonances and of band excitations mediated by dipole interactions. Resonances line-shape is sensitive to the interaction energy in each lattice site, and therefore to on-site number distribution. - B is below the first excitation band : Observation of intersite dynamics, with constant magnetization. -B is very low : spontaneous depolarization.

At extremely low magnetic field (<1.5 mG): Spontaneous demagnetization of atoms in a 3D lattice 3D lattice Critical field 4kHz Threshold seen 5kHz PRL 106, (2011) ( in bulk BEC)

Summary - Magnetism in lattice Away from resonances: spin oscillations Spin-exchange : intrasite and inter site dynamics Not robust in Mott regime Resonant magnetization dynamics Few body vs many body physics Spontaneous depolarization at low magnetic field Towards low-field phase diagram

A.de Paz, A. Chotia, A. Sharma B. Pasquiou, G. Bismut, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri, M. Efremov, O. Gorceix Thanks for your attention!.

A.de Paz, A. Chotia, A. Sharma B. Pasquiou, G. Bismut, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri, M. Efremov, O. Gorceix