野村悠祐、中村和磨A、有田亮太郎 東大工、九工大院A

Slides:



Advertisements
Similar presentations
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Advertisements

三方晶テルル・セレンにおけるDirac分散とスピン軌道効果
Hideaki Kasai Department of Precision Science and Technology & Applied Physics Osaka University, Japan 「コンピューティックスによる物質デザイン:複合相関と非平衡ダイナミクス」研究会 2012年3月16日(金)-3月17日(土)
微視的核構造反応模型を用いた 9Li 原子核の励起状態の研究
Optical Properties of Solids within WIEN2k
Introduction to PAW method
Ab initio calculation of pristine picene and potassium doped picene Kotaro Yamada Kusakabe laboratory Reference: T. Kosugi et al.: J. Phys. Soc. Jpn. 78.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Correlation functions in the Holstein-Hubbard model calculated with an improved algorithm for DMRG Masaki Tezuka, Ryotaro Arita and Hideo Aoki Dept. of.
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Transverse force on a magnetic vortex Lara Thompson PhD student of P.C.E. Stamp University of British Columbia July 31, 2006.
SCOPE 衛星搭載用 低エネルギー電子計測器の 開発 STP seminar 2010/9/22 東京大学大学院 理学系研究科 地球惑星科学専 攻 ( ISAS/JAXA ) 斎藤研 修士2年 富永祐.
1 ヤマセに関する 2-3 の話題 (2) 川村 宏 東北大学大学院理学研究科 H 弘前大学.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
LDA band structures of transition-metal oxides Is it really the prototype Mott transition? The metal-insulator transition in V 2 O 3 and what electronic.
Quick and Dirty Introduction to Mott Insulators
Phonon Contribution to quasiparticle lifetimes in Cu measured by angle-resolved photoemission PRB 51, (1995)‏
Crystal Lattice Vibrations: Phonons
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Theoretical approach to physical properties of atom-inserted C 60 crystals 原子を挿入されたフラーレン結晶の 物性への理論的アプローチ Kusakabe Lab Kawashima Kei.
Superconductivity III: Theoretical Understanding Physics 355.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Nano-scaled domain in the strongly correlated electron materials ( 強相関電子系におけるナノスケール電子相ドメイン ) Tanaka Laboratory Kenichi Kawatani First M1 colloquium.
Electronic instabilities Electron phonon BCS superconductor Localization in 1D - CDW Electron-electron (  ve exchange)d-wave superconductor Localization.
野村悠祐、 A 中村和磨、有田亮太郎 東大工、 A 九工大院 フラーレン超伝導体の電子格子相互作用を含む低エネルギー模型導出 Ab initio derivation of low-energy model including phonon terms for C 60 superconductors.
Computational Solid State Physics 計算物性学特論 第6回
Charge transport in DNA molecules: Structural and dynamical disorder 张伟 北京应用物理与计算研究所 2007 年 10 月.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
格子QCDシミュレーションによる QGP媒質中のクォーク間ポテンシャルの研究
MEG 実験におけるミュー粒子放射崩壊の 測定と利用 日本物理学会第67回年次大会 ICEPP, the University of Tokyo 内山 雄祐.
Yoshida Laboratory Yuya Yamada (山田裕也) 1 Theoretical prediction of structures and properties of simple materials under high pressure ( 高圧下における単純物質の構造と物性の理論的予測.
Pd(110) 表面における水素吸収の機構 Markus Wilde ・ Satoshi Ohno ・ Katsuyuki Fukutani Institute of Industrial Science, University of Tokyo 文部科学省科学研究費新学術領域研究 ・ 2014 年.
物質厚さの考察(手始め) エネルギー損失 – 物質の Stopping power, density, thickness に依る。 – 陽電子の運動量 (10-250MeV/c の領域 ) に大きく依存 しない。 – 大体、 5MeV/cm (Al), 2.5MeV/cm (Polycarbonate)
Matteo Calandra, Gianni Profeta, Michele Casula and Francesco Mauri Adiabatic and non-adiabatic phonon dispersion in a Wannier functions approach: applications.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Phonons & electron-phonon coupling Claudia Ambrosch-Draxl Department für Materialphysik, Montanunversität Leoben, Austria Institut für Physik, Universität.
 Hyperon atom : Σ atom, Ξ, analysis of atomic data Level width : Determination of the coupling constants Σatom : Ξatom : Level Shift : Determination of.
Theoretical prediction of structures and properties of lithium under high pressure ( 高圧下におけるリチウムの構造と 物性の理論的予測 ) Yoshida Laboratory Yuya Yamada (山田裕也)
Sergey Savrasov Department of Physics, University of California, Davis Turning Band Insulators into Exotic Superconductors Xiangang Wan Nanjing University.
Superconducting properties in filled-skutterudite PrOs4Sb12
Density Functional Theory Richard M. Martin University of Illinois
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
1 5.0 引言 5.1 轨道, 相互作用与自旋 5.2 原子和分子的磁矩 5.3 晶体的磁矩 5.4 晶体的磁各向异性 5.5 习题 5. 磁性与电子态.
Development of density functional theory for unconventional superconductors Ryotaro Arita Univ. Tokyo/JST-PRESTO.
Eliashberg Function in ARPES measurements Yu He Cuperates Meeting Dec. 3, 2010.
Scalar perturbations in braneworld cosmology Takashi Hiramatsu Research Center for the Early Universe (RESCEU), School of Science, University of Tokyo.
Massimo Capone WHEN MOTT MEETS BCS: MOLECULAR CONDUCTORS AND THE SEARCH FOR HIGH Tc SUPERCONDUCTIVITY Massimo Capone ICAM BU Workshop – Digital Design.
带强磁场奇异星的 中微子发射率 刘学文 指导老师:郑小平 华中师范大学物理科学与技术学院. Pulsar In 1967 at Cambridge University, Jocelyn Bell observed a strange radio pulse that had a regular period.
Third-order optical nonlinearity in ZnO microcrystallite thin films Weili Zhang, H. Wang, K. S. Wong,a) Z. K. Tang, and G. K. L. Wong accepted for publication.
K p k'k' p'p'  probability amplitude locality,Lorentz inv.gauge inv. spinor   vector A  T  electron quark scattering scattering cross section Feynman.
Electron-Phonon Relaxation Time in Cuprates: Reproducing the Observed Temperature Behavior YPM 2015 Rukmani Bai 11 th March, 2015.
Lieb-Liniger 模型と anholonomy 阪市大数研: 米澤 信拓 首都大学東京: 田中 篤司 高知工科大学: 全 卓樹.
橋本佑介 A,B 三野弘文 A 、山室智文 A 、蒲原俊樹 A 、神原大蔵 A 、松末俊夫 B Jigang Wang C 、 Chanjuan Sun C 、河野淳一郎 C 、嶽山正二郎 D 千葉大院自然 A 、千葉大工 B 、ライス大 ECE C 、東大物研 D Y. Hashimoto A,B.
Low-temperature properties of the t 2g 1 Mott insulators of the t 2g 1 Mott insulators Interatomic exchange-coupling constants by 2nd-order perturbation.
Crucial interactions in BaIrO 3 : Spin-orbit coupling and Coulomb correlation W.W. Ju ( 琚伟伟 ) and Z. Q. Yang*( 杨中芹 ) Abstract The electronic structures.
Flat Band Nanostructures Vito Scarola
Correlation in graphene and graphite: electrons and phonons C. Attaccalite, M. Lazzeri, L. Wirtz, F. Mauri, and A. Rubio.
Electron-Phonon Coupling in graphene Claudio Attaccalite Trieste 10/01/2009.
R. Nourafkan, G. Kotliar, A.-M.S. Tremblay
Tunable excitons in gated graphene systems
Active lines of development in microscopic studies of
Solid state physics Lecture 3: chemical bonding Prof. Dr. U. Pietsch.
Minimal Model for Study on Superconductivity
tight binding計算によるペロブスカイト型酸化物薄膜のARPESの解析
量子情報処理にむけての クラスター変分法と確率伝搬法の定式化
The p-wave scattering of spin-polarized Fermi gases in low dimensions
Department of Physics, Sichuan University
Presentation transcript:

野村悠祐、中村和磨A、有田亮太郎 東大工、九工大院A 新学術領域「コンピューティクスによる物質デザイン:複合相関と非平衡ダイナミクス」 計画班「第一原理有効模型と相関科学のフロンティア」 鉄系超伝導体における電子格子相互作用の 軌道揺らぎへの影響 Effect of electron-phonon interactions on orbital fluctuations in iron-based superconductors 野村悠祐、中村和磨A、有田亮太郎 東大工、九工大院A YN, K. Nakamura, and R. Arita, arXiv:1305.2995

Ab initio downfolding for electron-phonon coupled systems Low-energy models for electron-phonon coupled systems: i,j: orbital (Wannier) indices (w): Wannier gauge s : spin index O(p): the quantity with constraint (partially screened) Q. How do we evaluate ? A. Constrained random phase approximation (cRPA) F. Aryasetiawan et al., Phys. Rev. B. 70 19514 (2004)

Constrained RPA ・Independent particle polarizability(RPA) T ② V ③ ① ② F. Aryasetiawan et al., Phys. Rev. B. 70 19514 (2004) ・Independent particle polarizability(RPA) EF T ② V ③ ① ② ③ ④ ① =①+②+③+④ exclude the contribution from T↔T scattering This screening process should be considered when we solve the low-energy effective model ④ Occupied (O) V:virtual T:target

Ab initio downfolding for electron-phonon coupled systems Low-energy models for electron-phonon coupled systems: i,j: orbital (Wannier) indices (w): Wannier gauge s : spin index O(p): the quantity with constraint (partially screened) Q. How do we evaluate and ? A. Constrained density-functional perturbation theory YN, K. Nakamura, and R. Arita, arXiv:1305.2995 cf. Desity-functional perturbation theory (without constraint) S. Baroni et al, Rev. Mod. Phys. 73, 515 (2001).

Phonon frequency and electron-phonon coupling S. Baroni et al, Rev. Mod. Phys. 73, 515 (2001). Phonon frequencies and electron-phonon couplings are given by (for simplicity we consider the case where there is one atom with mass M in the unit cell) ν:phonon mode u : displacement of the ion Dynamical matrix : characteristic length scale where E : electron ground-state energy α: cartesian coordinates (x,y,z) Key quantity bare Hartree + exchange correlation terms (screening)

Constrained density-functional perturbation theory YN, K. Nakamura, and R. Arita, arXiv:1305.2995 In the metallic case, is given by n,m: band indices EF T Occupied (O) V ① ② ③ ④ ① ② ③ ④ exclude the target-target processes Partially screened quantities such as and V:virtual T:target

Iron-based superconductors 1111 system 122 system G. R. Stewart, RMP 83, 1589 (2011). I. R. Shein and A. L. Ivanovskii, Solid State Commun. 149,1860 (2009). Y. Kamiahara et al., J. Am Chem. Soc. 130, 3296 (2008). 111 system 11 system and more… G. R. Stewart, RMP 83, 1589 (2011). Z. Deng et al., Europhys. Lett. 87, 37004 (2009). G. R. Stewart, RMP 83, 1589 (2011). F.-C. Hsu et al., Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008).

Pairing symmetry: Iron pnictide H. Kontani and S. Onari, PRL 104, 157001 (2010). T. Saito et al., PRB 82, 144510 (2010). Pairing symmetry: Iron pnictide Linearized Eliashberg equation: Band structure Fermi surfaces Here spin and charge fluctuations are given by and (within RPA) Without el-ph interactions With el-ph interactions such that χs > χc (spin fluctuations are dominant) → W < 0 (repulsive) → sign change in gap functions (s±-state) χc > χs (charge fluctuations are dominant) → W > 0 (attractive) → no sign change (s++-state) f3 f4 f3 f4

Role of electron-phonon interactions Spin fluctuations (enhanced by Hubbard U ) s±-wave Orbital fluctuations (enhanced by el-ph interactions?) s++-wave Q. Do el-ph interactions really enhance the orbital fluctuations?

Phonon-mediated interactions Effective on-site el-el interactions coming from the exchange of phonons: momentum-space average -> on-site quantity We get cf. (Kontani & Onari) ・ Jph is very small ・ not negligible compared to Coulomb repulsion U ~ 2 eV ・ these frequency dependent interactions vanish around ωl ~ ωD

Gap functions in band representation RPA analysis ・ the magnitude of Jph is crucial to the enhancement of orbital fluctuations ・ spin fluctuations are dominant (since Jph is small in magnitude) Gap functions in band representation T = 0.02 eV n(filling) = 6.1 5-orbitals model s±-wave state is realized

Conclusion developed a method for ab initio downfolding for el-ph coupled systems Effective parameters for LaFeAsO: Uph(0) ~ U’ph(0) ~ -0.4 eV, Jph(0) ~ -0.02 eV RPA analysis -> s± (due to the smallness of Jph ) YN, K. Nakamura, and R. Arita, arXiv:1305.2995