Spectroscopic Investigation of  hypernuclei in the wide mass region using the (e,e’K + ) reaction (Extension request of the currently running E01-011.

Slides:



Advertisements
Similar presentations
1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.
Advertisements

Λ hypernuclea r spectroscop y at Jefferson Lab The 3 rd Korea-Japan on Nuclear and Hadron Physics at J-PARC, at Inha University in Korea 2014/3/20 – 2014/3/21.
SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
HYPERNUCLEAR PHYSICS USING CEBAF BEAM PAST AND FUTURE Liguang Tang Hampton University/JLAB 4 th Workshop on Hadron Physics In China and Opportunities with.
Recent results from the Hall C hypernuclear program Recent results from the Hall C hypernuclear program - JLab E Osamu Hashimoto Tohoku University.
Study of  -Hypernuclei with Electromagnetic Probes at JLAB Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB)
1/12/2007DNP Town Meeting, Joerg Reinhold (FIU) Hypernuclear Spectroscopy Joerg Reinhold Florida International University for the Jefferson Lab Collaborations.
Satoshi N. Nakamura, Tohoku University Study of Lambda hypernuclei with electron beams JLab HKS-HES collaboration, 2009, JLab Hall-C On behalf of JLab.
Zhihong Ye Hampton University Feb. 16 th 2010, APS Meeting, Washington DC Data Analysis Strategy to Obtain High Precision Missing Mass Spectra For E
Lulin Yuan / Hampton University For HKS-HES collaboration Hall C Summer meeting, August 7, 2009.
S.N.Nakamura, Tohoku Univ. JLab HallC Meeting 22/Jan/2010, JLab.
Spectroscopic Investigation of P-shell Λ hypernuclei by the (e,e'K + ) Reaction - Analysis Update of the Jlab Experiment E Chunhua Chen Hampton.
J-PARC: Where is it? J-PARC (Japan Proton Accelerator Research Complex) Tokai, Japan 50 GeV Synchrotron (15  A) 400 MeV Linac (350m) 3 GeV Synchrotron.
Nov.29,2011/HU group meeting Spectroscopic Investigation of P-shell Λ hypernuclei by (e,e'K + ) - Analysis Updated Status - Chunhua Chen Hampton Universithy.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
HYPERNUCLEAR PHYSICS - N interaction
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Lambda hypernuclear spectroscopy at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS collaboration 1.Introduction.
Possibility for hypernuclei including pentaquark,   Kiyoshi Tanida (Seoul National Univ.) 19 Sep 2009 High resolution search for   &
Decade of Hypernuclear Physics at JLAB and Future Prospective in 12 GeV Era Liguang Tang Department of Physics, Hampton University & Jefferson National.
Brad Sawatzky / JLAB Acknowledgements to Liguang Tang Hampton University/JLAB MESON 2012 Krakow, Poland.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
New (e,e ’ K+) hypernuclear spectroscopy with a high-resolution kaon spectrometer Osamu Hashimoto Department of Physics, Tohoku University December 4-7.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
A Study with High Precision on the Electro- production of  and  -hypernuclei in the Full Mass Range Liguang Tang On behalf of the unified JLab hypernuclear.
HYPERNUCLEAR PHYSICS Hypernuclei are bound states of nucleons with a strange baryon (  hyperon). Extension of physics on N-N interaction to system with.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
HYPERNUCLEAR PHYSICS Hypernuclei are bound states of nucleons with a strange baryon (  hyperon). Extension of physics on N-N interaction to system with.
JLab hypernuclear collaboration meeting / JSPS Core to Core Seminar Study of elementary process in Hall-C p(γ*,eK + )Λ/Σ 0 9May2012 – 11May2012 Department.
JLab Hypernuclear Workshop 27 th May 2014 Satoshi N Nakamura, Tohoku University HKS HES Results from Hall-C.
Spectroscopy of  -Hypernuclei by Electroproduction HNSS/HKS Experiments at JLAB L. Tang Hampton University & JLAB FB18, Brazil, August 21-26, 2006.
Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB) July 31 & Aug. 1, 2009, OCPA6 Satellite Meeting on Hadron.
Osamu Hashimoto Department of Physics Tohoku University APCTP Workshop on Strangeness Nuclear Physics (SNP'99) February 19-22, 1999 Reaction spectroscopy.
Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory (JLAB) Sphere/Core-to-Core meetings, September 4-6, 2010, Prague,
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
The SKS Spectrometer and Spectroscopy of Light  Hypernuclei (E336 and E369) KEK PS Review December 4-5, 2000 Osamu Hashimoto Tohoku University.
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
Hypernuclei Production Experiment E05115 at Jefferson Laboratory by the (e,e’K + ) Reaction Chunhua Chen March 31, 2012  Introduction  Experimental Setup.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Study of Neutron-Rich  Hypernuclei Tomokazu FUKUDA Osaka Electro-Communication University 2013/09/091EFB 22.
1 E05-115: Third Generation Hypernuclear Experiment Hall C User Meeting January 18th, 2008 (Fri) Yu Fujii Tohoku Univ. E : Spectroscopic investigation.
Magnetic Moment of a  in a Nucleus H. Tamura Tohoku University 1. Introduction 2.  -ray spectroscopy of  hypernuclei and spin-flip B(M1) 3. Experiments.
JLab における (e,e'K + ) 反応を用い た 精密ラムダハイパー核分光実験 東北大学理学研究科 後神 利志 Toshiyuki Gogami Strangeness 2010 at KEK JLab Hall-C.
Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory (JLAB) PAC35, January 25, 2010, JLAB Mesonic Decay inside.
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Electrophoto-production of strangeness and  Hypernuclei Osamu Hashimoto Department of Physics, Tohoku University October 21-22, 2004 Jeju University.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
Lulin Yuan / Hampton University 2008 APS April Meeting St. Louis Missouri, Apr. 12, 2008.
18th Indian-Summer School for the next generation (e,e’K + ) hypernuclear experiment, JLab E Department of Physics, Tohoku Univ. Japan D. Kawama.
Study of light hypernuclei by the (e,e’K + ) reaction Graduate school of science, Tohoku Univ. Toshiyuki Gogami JLab E collaboration, 2009, JLab.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
Hypernuclear investigation Few-body aspects and YN, YY interaction –Short range characteritics ofBB interaction –Short range nature of the LN interaction,
Study of  -Hypernuclei with Electromagnetic Probes at JLAB Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB)
Spectroscopic study of  hypernuclei in the medium-heavy mass region and p-shell region using the (e,e’K + ) reaction (PR08-002) JLab PAC33 16, Jan, 2008.
Hypernuclear Spectroscopy with Electron Beams
L. Tang Hampton University / JLAB On behalf of Hall A collaboration
Florida International University, Miami, FL
LEDA / Lepton Scattering on Hadrons
Hypernuclear spectroscopy using (K-stop,p0) and (e,e’K+) reactions
Progress on J-PARC hadron physics in 2016
Spectroscopy of -Hypernuclei by Electroproduction HNSS/HKS Experiments at JLAB L. Tang Hampton University & JLAB SNP2006, Zhangjiajie, Sept.
高強度高分解能2次ビームラインを用いたハイパー核研究
Presentation transcript:

Spectroscopic Investigation of  hypernuclei in the wide mass region using the (e,e’K + ) reaction (Extension request of the currently running E experiment) Osamu Hashimoto Department of Physics, Tohoku University representing the HKS collaboration JLab PAC28 August 24, 2005 P05-115

Hyper Collaboration O. Hashimoto (Spokesperson), S.N. Nakamura (Spokesperson), Y. Fujii, M. Kaneta, M. Sumihama, H. Tamura,K. Maeda, H. Kanda, Y. Okayasu, K. Tsukada, A. Matsumura, K.~Nonaka, D. Kawama, N. Maruyama, Y. Miyagi (Tohoku U) S. Kato (Yamagata U) T. Takahashi, Y. Sato, H. Noumi (KEK) T. Motoba (Osaka EC) L. Tang (Spokesperson), O.K. Baker, M. Christy, L. Cole, P. Gueye, C. Keppel, L. Yuan (Hampton U) J. Reinhold (Spokesperson), P. Markowitz, B. Beckford, S. Gullon, C. Vega (FlU) Ed.V. Hungerford, K. Lan, N. Elhayari, N. Klantrains, Y. Li,S. Radeniya (Houston) R. Carlini, R. Ent, H. Fenker, D. Mack, G. Smith, W. Vulcan, S.A. Wood, C. Yan (JLab) N. Simicevic, S. Wells (Louisiana Tech) L. Gan (North Carolina, Wilmington) A. Ahmidouch, S. Danagoulian, A. Gasparian (North Carolina A&T) D. Dehnhard (Minnesota) M. Elaasar(New Orleans) R. Asaturyan, H. Mkrtchyan, A. Margaryan, S. Stepanyan, V. Tadevosyan (Yerevan) D. Androic, T. Petkovic, M. Planinic, M. Furic (Zagreb) T. Angelescu (Bucharest) V.P. Likhachev (Sao Paulo) M. Ahmed (Duke)

Outline of the talk 1.Significance of hypernuclear spectroscopy and goals of the proposed experiment 2.(e,e’K + ) spectroscopy and the current status of E experiment 3. Setup & conditions of the proposed experiment 4. Summary with prospect

Significance of hypernuclear spectroscopy and the goals of the proposed experiment

3D Nuclear Chart with the strangeness degree of freedom

Single-particle nature of  hypernuclei New degree of freedom  free from Pauli blocking Deeply bound nuclear states Baryon structure in nuclear medium Unique structure of hadronic many-body system Nucleus with a new quantum number Core excited states Glue role of a  hyperon  N interaction Unified view of baryon-baryon interaction in SU(3) Central and spin-dependent  N interaction Singly charged atom Core Nucleus +  Core excitation, A  hyperon in the mean field

Nucleon single particle orbits e e’ p

Single-particle nature of  hypernuclei New degree of freedom  free from Pauli blocking Deeply bound nuclear states Baryon structure in nuclear medium Unique structure of hadronic many-body system Nucleus with a new quantum number Core excited states Glue role of a  hyperon  N interaction Unified view of baryon-baryon interaction in SU(3) Central and spin-dependent  N interaction Singly charged atom Core Nucleus +  Core excitation, A  hyperon in the mean field

YN, YY Interactions and Hypernuclear Structure Free YN, YY interaction Constructed from limited hyperon scattering data (Meson exchange model: Nijmegen, Julich) YN, YY effective interaction in finite nuclei (YN G potential) Hypernuclear properties, spectroscopic information from structure calculation (shell model, cluster model…) Energy levels, Energy splitting, cross sections Polarizations, weak decay widths high quality (high resolution & high statistics) spectroscopy plays a significant role G-matrix calculation

Hypernuclear Hamiltonian v  N weak compared to v  H N (Core) : Core nucleus ( Usually hole states) t  :   kinetic energy V  N : effective  N interaction ( Nijmegen, Julich... ) H = H N (Core) + t  +  V  N effective Weaker compared with NN Direct comparison of spectroscopic data with structure calculation Biding energy, energy splitting, cross section, ….

Population of excited  hypernuclear states and  hypernuclear spectroscopy neutron or proton  n p  BB BpBp BnBn 208  Pb 207  Tl 207  Pb Weak decay nonmesonic mesonic  Narrow widths < a few 100 keV  -particle nucleon-hole states ~25 MeV Reaction spectroscopy Gamma-ray spectroscopy

B  =0  Hypernuclear production (  +,K + ) Stopped (K -,  ) (e,e’K+) ( ,K + ) (p,K + ) Inflight(K -,  ) Hypernuclear Cross section Momentum transfer (MeV/c) mb/sr nb/sr  b/sr JLab KEK, BNL BNL, CERN (K -,  - ) (  +,K + )

Light hypernuclei (A<~20) Fine structure Baryon-baryon interaction in SU(3)  coupling in large isospin hypernuclei Cluster structure Heavy hypernuclei (A>~50) Single-particle potential Distinguishability of a  hyperon U 0 (r), m  *(r), V  NN,... Neutron star (A ~ ) Hyperonization  Softening of EOS ? Superfluidity Hypernuclei in the wide mass range -- toward strange matter -- Short range nature of the  N interaction : no pion exchange meson picture or quark picture ?

12 C(  +,K + ) 12  C spectra by the SKS spectrometer at KEK 12 GeV PS KEK336 2 MeV(FWHM) KEK E MeV(FWHM) Hypernuclear spectroscopy established BNL 3 MeV(FWHM) SKS

 Single particle states ->  -nuclear potential  hyperon in heavier nuclei Single-particle orbits in nucleus Hotchi et al., PRC 64 (2001) Hasegawa et. al., PRC 53 (1996)1210KEK E140a Skyrme HF (Yamamoto) DDRH (Lanske) Quark-meson coupling (Saito, Thomas) ……… YLaPb Si

Goals of the proposed experiment 51 V(e,e’K + ) 51  Ti reaction –Next heavier  hypernuclei from 28  Al –  binding energies for s,p,d orbits determined –  hypernuclear structure investigated – ls splitting in l=2,3 orbits to b derived If sizable 89 Y(e,e’K + ) 89  Sr reaction – Exploratory run to examine feasibility of (e,e’K+) spectroscopy in heavier hypernuclei 6,7 Li(e,e’K + ) 6,7  He and 10,11 B(e,e’K + ) 10,11  Be – Precision hypernuclear structure in neutron-rich  hypernuclei – LS coupling effect changing isospins with neutron number

(e,e’K+) spectroscopy and E status

The (e,e’K + ) reaction for hypernuclear spectroscopy Proton to    Neutron rich  hypernuclei Large angular momentum transfer Spin-flip amplitude   Hyperon production reactions for spectroscopy  Z = 0  Z = -1 comment neutron to  proton to  (  +,K + ) (  -,K 0 ) stretched, high-spin large momentum transfer In-flight (K -,  - ) in-flight (K -,  0 ) substitutional stopped (K -,  - ) stopped (K -,  0 ) large momentum transfer (e,e'K 0 ) (e,e'K + ) spin-flip (  K 0 ) ( ,K + ) & large momentum transfer Higher energy resolution & First (e,e ’ K + ) spectroscopy  E (SOS + ENGE) A few 100 keV achievable Only at JLab

What limited the E experiment ? Energy resolution –The kaon arm limited hypernuclear mass resolution Hypernuclear yield rates –High accidental background rate due to Brems electrons –Solid angle of the kaon arm (SOS) limited detection efficiency (1) A high-resolution large-solid-angle kaon spectrometer (HKS) (2) New experimental configuration “Tilt method”

Tilt method and optimization of the tilt angle Side view Singles rate of the e-arm 200 MHz  < a few MHz even with 5  Target thickness and 50  Beam intensity

Maximum momentum 1.2 GeV/c Dispersion 4.7 cm/% Momentum resolution 2 x (FWHM) Solid angle 30 msr w/o splitter 16 msr w splitter Momentum acceptance 12.5 % The HKS spectrometer system for E Tilt method for the electron arm High resolution Kaon Spectrometer (HKS)

E setup in Hall C ENGE HKS Tilted ENGE

Expected singles rates Target HKSENGE e + (kHz)  + (kHz) K + (kHz) p (kHz) e - (kHz)  - (kHz) 12 C , Si , V , E C <1 Hz ,000- SOSENGE I e = 30  A, 100 mg/cm 2 High rejection efficiencies against pions and protons are required Measured values at E I e = 0.66  A, 22 mg/cm 2 Greater hadron rates

Yield comparison of E and E ItemE01-011E Gain factor Virtual photon flux per electron(x10 -4 ) Target thickness(mg/cm 2 ) Scattered electron momentum acceptance(MeV/c) Kaon survival rate Solid angle of K arm (msr) Beam current (  A) Estimated yield ( 12  B gr :counts/h) 41 (expected) 0.9 (measured) 46

Beam currents, singles rates & trigger rates E Target Beam current (  A) COIN Trigger rate (Hz) HKS singles rate (kHz) ENGE singles rate (kHz) CH 2 (5 mm) C (100 mg/cm 2 ) Si (65 mg/cm 2 ) Tilt method proved to work !!

 p K Kaon PID E coincidence time (ns)  tof –  track HKS singles eventsHKS-ENGE coincidence events

p(e,e’K + )  0 reactions 12 C(e,e’K + ) quasi-free Accidental E experimentE experiment Improved! 210 Lambda’s 1390 Lambdas

(2+,3+)(1-,2-) (1-,0-) (2-,1-)  B spectrum ( 12 C target ) 12  B g.s ~ 600 counts (~20 /hr) <1 MeV (FWHM)  400 keV vs. E Hall C ~ 165 counts with ~750 keV (~0.9 /hr) E Hall A ~ 600 counts with ~800 keV (~3 /hr) Preliminary Hypernuclear excitation (300 keV/bin) d  /d  nb/sr/0.3 MeV -B  (MeV) 1 month E E < 1MeV (FWHM)

Proposed experimental setup & conditions Basically similar to those of E except for the new High-resolution electron spectrometer and some improvement based on the E experience

HKS-HES hypernuclear spectrometer system New Splitter

High resolution electron spectrometer (HES) --- widen acceptable beam energy window --- compatible with 6, 12 GeV operation P K (GeV/c) E  * (GeV/c) Ee (GeV/c) Ee’ (GeV/c E & E E HES Option – 1.0 HKSE  dependence 6 GeV 12 GeV Beam energy and spectrometer conditions ( ENGE is used as an electron spectrometer when the beam energy is 1.8 GeV )

E top 1 pass (GeV) E top 2pass (GeV) Acceptable energy windows of HKS system with ENGE or HES E e’ (GeV) E e at Hall (GeV) Acceptable Central Energy (GeV) HES ENGE

Basic specification of HES Configuration DQQD horizontal 50 degree bend Central momentum 0.6 – 1.0 GeV/c Momentum acceptance > 200 MeV/c Momentum resolution 2 x Electron detection angle horizontal : 0 degrees vertical : < 10 degrees Solid angle > 10 msr Maximum D magnetic field 1.6 T

Splitter, HKS, HES geometry HKS HES New Splitter 0.6 GeV/c 1.0 GeV/c Splitter TOSCA calculation

HES mechanical design For 600 MeV/c For 1000 MeV/c

Expected Energy Resolution Item Contribution to the resolution (keV, FWHM) Target 7 Li 12 C 51 V 89 Y HKS momentum 190 ( 500 for SOS) Beam momentum< 180 Enge or HES momentum 93 K + angle Target thickness< 170< 180< 148< 138 Overall< 400< 360< 320< 310 <~400 keV(FWHM) expected

Expected hypernuclear production rates in the (e,e’K + ) reaction Target Beam Intensity (  A) Counts per 100nb/sr /hour Q-free K+ in HKS(Hz) 12 C Si V Target Hypernucle us  orbital Cross section (nb/sr) 12 C 12  B s1/2112 p3/279 p1/ Si 28  Al s1/256 p3/295 p1/257 d5/2131 d3/ V 51  Ti s1/218 p3/241 p1/226 d5/252 d3/248 1s1/216 f7/232 f5/238 Calculated hypernuclear cross sections (Target thickness 100 mg/cm 2 ) Hypernuclear production rates Motoba, Sotona

51  Ti and 51  V spectra KEK SKS data Simulation

50 22 Ti and V

Evolution of (e,e’K + ) spectroscopy E89-009E94-107E01-011P05-115* Configuration SOS+ENGE +Splitter HRS+HRS +Septum HKS+ENGE +Splitter HKS+HES +New splitter Beam intensity (  A) on 12 C thickness (mg/cm 2 )22100 Hypernuclear yield (12  B gr : /hr) ~ (40)(> 40) Resolution (keV) ~ 800(3-400) Beam energy (GeV) * pK (central : GeV) Pe (central: GeV ) – 1.0  K (degree)  e (degree) 064.5< 4.5 ( ) expected * ENGE spectrometer to be used for a 1.8 GeV beam ?

Roadmap of (e,e’K + ) hypernuclear spectroscopy Light  hypernuclear spectroscopy –  N interaction,  coupling p shell hypernuclei 6,7 Li, 9 Be, 10,11 B, 12 C, 13 C, 16 O targets s shell hypernuclei 3,4 He targets Medium to heavy hypernuclear spectroscopy –A  binding in the mean field, quark picture vs. conventional picture 28 Si, 51 V, (Cr)  89 Y  208 Pb ? targets Coincidence experiment – weak decay --- fission – proton, neutron and pion emission HKS as a “strangeness tagger” HES as a “virtual photon tagger” Complimentary to spectroscopy with hadronic beams at J-PARC

Requested beam time TargetHypernucleus# of days# of hours Spectrometer commissioning & calibration 4(8)96(192) Data taking 6,7 Li, 10,11 B 6,7  He, 10,11  Be V 51  Ti Y 89  Sr 5120 Subtotal for data taking Grand total 28(32)672(768)

Summary Precision hypernuclear spectroscopy by the (e,e’K+) reaction plays an essential role in the investigation of hadronic may-body systems that contain “strangeness”. Physics goal of the proposed experiment is two-fold; spectroscopy of heavier  hypernuclei ( 51 V target) and light  hypernuclei( 6,7 Li or 10,11 B targets). A high resolution electron spectrometer (HES) is under construction at TOHOKU as a part of the HKS-HES hypernuclear spectrometer system. It will be shipped to JLab at the end of The HKS-HES spectrometer system allows us to conduct the proposed 3 rd generation (e,e’K+) hypernuclear spectroscopy even with 6 GeV and 12 GeV operation.