Measurement and Significant Figures. Precision and Accuracy What is the difference between precision and accuracy in chemical measurements? Accuracy refers.

Slides:



Advertisements
Similar presentations
Homework Answers m/s m g/L cm3
Advertisements

SECTION 2-3. Objectives 1. Distinguish between accuracy and precision 2. Determine the number of significant figures in measurements 3. Perform mathematical.
Scientific Notation Write 17,500 in scientific notation x 104
SCIENTIFIC NOTATION, SIGNIFICANT DIGITS, & METRIC CONVERSIONS
1 Significant Figures Any digit that is not zero is significant kg 4 significant figures Zeros between nonzero digits are significant 606 m 3 significant.
Unit 1 Part 2: Measurement
Uncertainty in Measurements
Scientific Measurement
Chapter 3 Scientific Measurement
Section 3.1 Measurements and Their Uncertainty
Unit 1 Into to Measurement
Using and Expressing Measurements
IB Chem I Uncertainty in Measurement Significant Figures.
Units and Standards. In science, numbers aren’t just numbers. They need a unit. We use standards for this unit. A standard is: a basis for comparison.
1-1 What is Physics?  What does Physics mean? "Physics" is from the Greek root physik (science of nature) and Latin physica (natural science).  It’s.
Introduction to analysis Data handling, errors and so on.
Scientific Notation Converting into Sci. Notation: –Move decimal until there’s 1 digit to its left. Places moved = exponent. –Large # (>1)  positive.
Chapter 3 Scientific Measurement Pioneer High School Mr. David Norton.
Measurement and Significant Figures. Precision and Accuracy What is the difference between precision and accuracy in chemical measurements? Accuracy refers.
Unit 1- Units and Measurement Chemistry. Scientific Notation, Measurement, Accuracy, Precision, Error.
The Importance of measurement Scientific Notation.
Honors Chemistry I. Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.
Unit 1 Chapter 2. Common SI Units SI System is set-up so it is easy to move from one unit to another.
3.1 Measurement and Uncertainty How do you think scientists ensure measurements are accurate and precise?
Unit 1: Introduction to Chemistry Measurement and Significant Figures.
Chapter 3. Measurement Measurement-A quantity that has both a number and a unit. EX: 12.0 feet In Chemistry the use of very large or very small numbers.
INTRODUCTION TO CHEMISTRY CHAPTERS 1 AND 2. 1.) WHAT IS CHEMISTRY?  The study of matter and the changes that matter undergoes.
I. Using Measurements MEASUREMENT IN SCIENCE. A. Accuracy vs. Precision Accuracy - how close a measurement is to the accepted value Precision - how close.
The Science of Chemistry Measurement. Introduction When you hear the term chemistry, what comes to mind??? What do you think we are going to study?? Choose.
Preview Lesson Starter Objectives Accuracy and Precision Significant Figures Scientific Notation Using Sample Problems Direct Proportions Inverse Proportions.
“Scientific Measurement”. Measurements and Their Uncertainty OBJECTIVES: Convert measurements to scientific notation.
CHEMISTRY CHAPTER 2, SECTION 3. USING SCIENTIFIC MEASUREMENTS Accuracy and Precision Accuracy refers to the closeness of measurements to the correct or.
Measurements and Calculations
Math Concepts How can a chemist achieve exactness in measurements? Significant Digits/figures. Significant Digits/figures. Sig figs = the reliable numbers.
Measuring and Calculating Chapter 2. n Scientific method- a logical approach to solving problems n -Observation often involves making measurements and.
WHAT WE HAVE LEARNED. SCIENTIFIC NOTATION 1. Move the decimal to the right of the first non-zero number. 2. Count how many places the decimal had to.
Numbers and measurement Chapter 2 p Units of Measurement Measurements must have both a number and a unit!!!! Example: 26.7 m Like units have a.
Course Outline Math Review Measurement Using Measurements.
1 Scientific Measurement Objectives: Section 2.1 List common SI units of measurement and common prefixes used in the SI system. Distinguish mass, volume,
SI (International/Metric System) of Units Universally accepted way to measure things Based off of the number 10 Conversions can be done easily.
Numbers in Science Chemists deal with very large numbers
1-1 What is Physics?  "Physics" is from the Greek root physik (science of nature) and Latin physica (natural science).  It’s the scientific study of.
Unit Conversions Unit Conversion
Chapter 3 “Scientific Measurement”
AKA how to do the math and science needed for Chemistry
How big is the beetle? Measure between the head and the tail!
Scientific Measurement
Measurement.
Measurement Accuracy vs Precision Percent Error Significant Figures
Measurement I. Units of Measurement (p.34-45) Number vs. Quantity
Unit Conversions Unit Conversion
Unit 1: Measurement Notes
Unit Conversions Notes Unit Conversion
Unit Conversion Introduction to Engineering Design – Lesson Measurement and Statistics Unit Conversion Necessary in science and engineering to work.
Introduction: Matter and Measurement
Unit Conversions Unit Conversion
Measurement Accuracy vs Precision SI Units Dimensional Analysis
Units of Measurement All measurements must include the number and the unit Ex: 4.5 m or 23g/mL Use SI System- International System of Units which includes.
Metric Systems and Significant Figures
Analyzing Data Chemistry Chapter 2.
Chapter 2 Measurements and Calculations
MEASUREMENT I. Units of Measurement.
The Scientific Method: A logical series of steps
Dimensional Analysis.
TOPIC 0B: Measurement.
Scientific Measurement
Scientific Building Blocks
Introduction to Chemistry and Measurement
Chemistry Measurement Notes
Presentation transcript:

Measurement and Significant Figures

Precision and Accuracy What is the difference between precision and accuracy in chemical measurements? Accuracy refers to how close you are to the true value. Precision refers to how close several measurements are to each other.

Precision and Instruments Your measurement will only be as good as the instrument you use. Precision is limited by the gradations -or markings -on your instrument. We can typically estimate to one-tenth of a gradation mark when using graduated instruments in Chemistry.

Measurement Practice Accurate Not accurate Accurate (the average), but is precise and precise not precise BEAKER CYLINDER BURET 47 +/- 1 mL /- 0.1 mL / mL

Uncertainty in Measurement Any measurement will have some degree of uncertainty associated with it. For example, if you are 1.6 meters tall, we know that you are exactly ONE meter tall (not 0 or 2) but the second digit is an estimate and contains some uncertainty (it could be 0.58 rounded up, or 0.62 rounded down). Scientific measurements are rounded off so that the last digit is the only one that is uncertain. Preceding digits are known with certainty.

Significant figures What is the difference between the measurements mL and 25 mL? The first measurement is known to a greater degree of precision and contains more significant figures –it could be or whereas the second measurement lies between 24 and 26. The number of significant figures tells us how well we know a measurement. The known numbers PLUS the last uncertain number in a measurement are significant.

Rules for determining significant figures Any non-zero number is significant. example: 762 has 3, and 2500 has 2 Zeros: (a) leading zeros are not significant, they are just place holders. Ex: has 4, and has 3 (b) “Captive” zeros between nonzeros are significant. Ex: has 4 and has 5 (c) Trailing zeros are significant ONLY if the number contains a decimal point. Ex: 1.0 x10 2 has 2, and has 4 Exact numbers are numbers that are determined by counting (not measurement) or by definition are assumed to have an infinite number of significant figures. example: 1 minute equals 60 seconds 15 students are in class today

Practice Problem How many sig figs are in each? x , x10 6

Addition and Subtraction Using Significant Figures The answer must have the same number of decimal places as the least precise measurement used in the calculation. For example, consider the sum The answer is 31.1 since 18.0 only has one decimal place.

Multiplication and division using sig. figs. The number of significant figures in the answer is the same as the least precise measurement (lowest number of sig. figs.) used in the calculation. For example, consider the calculation 4.56 x 1.4 = 6.38 The correct answer is 6.4 (it should only have two sig figs since 1.4 has only two)

% Error calculations To determine the percent error of a measurement, use the following formula: % Error = accepted value – experimental value x 100% accepted value Example: 4.50 g – 4.31 g x 100% = 4.2% error 4.50 g Activity: density of Zn metal and % error calculations.. Use sig figs, find % error.

Scientific Notation The primary reason for converting numbers into scientific notation is to make calculations with unusually large or small numbers less cumbersome. Because zeros are no longer used to set the decimal point, all of the digits in a number in scientific notation are significant, as shown by the following examples: 2.4 x has 2 significant figures 9.80 x has 3 significant figures x has 4 significant figures

Converting to Sci. Not. The following rule can be used to convert numbers into scientific notation: The exponent in scientific notation is equal to the number of times the decimal point must be moved to produce a number between 1 and 10. Example: In 1990 the population of Chicago was 6,070,000. To convert this number to scientific notation we move the decimal point to the left six times. 6,070,000 = 6.07 x 10 6 To convert numbers smaller than 1 into scientific notation, we have to move the decimal point to the right. The decimal point in , for example, must be moved to the right four times = 9.85 x 10 -4

Exponent Review Some of the basics of exponential mathematics are given below: –Any number raised to the zero power is equal to 1. ex: 1 0 = 1 and 10 0 = 1 –Any number raised to the first power is equal to itself. ex: 1 1 = 1 and 10 1 = 10 –Any number raised to the nth power is equal to the product of that number times itself n-1 times. ex: 2 2 = 2 x 2 = 4 and 10 5 = 10 x 10 x 10 x 10 x 10 = 100,000 –Dividing by a number raised to an exponent is the same as multiplying by that number raised to an exponent of the opposite sign. ex: 5 ÷ 10 2 = 5 x = 0.05

Practice Problems Convert the following numbers into sci. not.: (a) (b) 19.8 (c) 4,679,000 ANSWER: (a) x (b) 1.98 x 10 1 (c) x 10 6 What is the percent error of a measurement that is 2.51 cm if the accepted value is 2.54 cm? ANSWER: (2.54 – 2.51) x 100% = 0.03 x 100% = 1.18% = 1% error

Review: metric unit prefixes Prefix Symbol Factor Numerically Name Giga G billion Mega M million kilo k thousand Deca D ten deci d tenth centi c hundredth milli m thousandth micro μ millionth nano n billionth

More Examples: Convert 50.0 mL to liters: How many seconds are in two years?

Dimensional Analysis We will often need to convert from one unit to another when solving problems in Chemistry. The best way to do this is by a method called dimensional analysis (a.k.a. factor-label method). For example, consider a pin measuring 2.85 cm in length. Given that one inch is equal to 2.54 cm, what is its length in inches? ? in = 2.85 cm x 1 in = 1.12 in 2.54 cm

Tips for using the method… In math you use numbers, in chemistry we use quantities. A quantity is described by a number and a unit. 100 is a number: 100 Kg is a quantity (notice that in chemistry we give meaning to the numbers). In science we solve a lot of the "math" by watching the units of the quantities There are two main rules to solving science problems with the factor-label method: 1. Always carry along your units with any measurement you use. Cancel units when appropriate. 2. You need to form the appropriate labeled ratios, (which means conversion factors have equal numerators and denominators). NO NAKED NUMBERS!

Unit Conversion Practice A pencil is 7.00 inches long. How long is it in cm? ANSWER: 17.8 cm A student has entered a 10.0 km race. How long is this in miles? ANSWER: 6.22 mi The speed limit on many highways in the U.S. is 55 mi/hr. What is this in km/hr? ANSWER: 89 km/hr

Linking conversion ratios Sometimes you will need to multiply by more than one ratio to get to your desired units, you can do this by using linking units. Your setup will look like this: Example: How many inches are in 1.00 meter given the equality 1 inch = 2.54 cm and 1 meter = 100 cm? ? in = 1.00 m x 100 cm x 1 inch = 39.4 in 1 m 2.54 cm

Advanced Problem A Japanese car is advertised as having a gas mileage of 15 km/L. Convert this rating to mi/gal. (Given conversion factors 1 mi = km, 1L=1.06 qt and 4 qt = 1 gal) ANSWER: 15 km x 1mi x 1 L x 4 qt = mi/gal L km 1.06 qt 1 gal With correct sig figs this rounds to 35 mi/gal

THE END