Dott. Antonio Botrugno Ph.D. course UNIVERSITY OF LECCE (ITALY) DEPARTMENT OF PHYSICS.

Slides:



Advertisements
Similar presentations
Modern Theory of Nuclear Structure, Exotic Excitations and Neutrino-Nucleus Reactions N. Paar Physics Department Faculty of Science University of Zagreb.
Advertisements

HL-5 May 2005Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-5) Collective excitations of nuclei photo-excitation of GDR particle-hole excitations.
Neutrino-nucleus  : Measurements vs. calculations Petr Vogel, Caltech Oak Ridge, Aug , 2003 Outline: a) review of known weak processes b) successes.
Extraction of Neutrino Flux from Inclusive Neutrino-Nucleus Reaction Osaka Univ. Tomoya Murata, Toru Sato.
Nuclear effects in neutrino quasielastic interaction Phys. Rev. C (2009) Phys. Rev. C (2010) Phys. Rev. C (2011) Phys. Rev.
Neutrino Interactions with Nucleons and Nuclei Tina Leitner, Ulrich Mosel LAUNCH09 TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
John Daoutidis October 5 th 2009 Technical University Munich Title Continuum Relativistic Random Phase Approximation in Spherical Nuclei.
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
Degree of polarization of  produced in quasielastic charge current neutrino-nucleus scattering Krzysztof M. Graczyk Jaroslaw Nowak Institute of Theoretical.
Analyzing Powers of the Deuteron-Proton Breakup in a Wide Phase Space Region Elżbieta Stephan Institute of Physics University of Silesia Katowice, Poland.
Incoming energy crucial for your physics result, but only badly known (~50%) Incoming energy crucial for your physics result, but only badly known (~50%)
Emilian Nica Texas A&M University Advisor: Dr.Shalom Shlomo
F.Sanchez (UAB/IFAE)ISS Meeting, Detector Parallel Meeting. Jan 2006 Low Energy Neutrino Interactions & Near Detectors F.Sánchez Universitat Autònoma de.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Neutrino Oscillations Or how we know most of what we know.
1 Yurii Maravin, SMU/CLEO Snowmass 2001 Experimental Aspects of  physics at CLEO-c measurements of fundamental quantities, tests of weak couplings and.
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.
Lecture 10: Inelastic Scattering from the Proton 7/10/2003
The Theory of Partial Fusion A theory of partial fusion is used to calculate the competition between escape (breakup) and absorption (compound-nucleus.
MINERvA Overview MINERvA is studying neutrino interactions in unprecedented detail on a variety of different nuclei Low Energy (LE) Beam Goals: – Study.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Measurements of F 2 and R=σ L /σ T on Deuteron and Nuclei in the Nucleon Resonance Region Ya Li January 31, 2009 Jlab E02-109/E (Jan05)
Chapters 9, 11, 12 Concepts covered that will also be candidates for exam questions.
Study of the Halo Nucleus 6 He using the 6 Li(   ) 6 He Reaction Derek Branford - Edinburgh University for the A2-Collaboration MAMI-B Mainz.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
ニュートリノ原子核反応 佐藤 透 ( 阪大 理 ) JPARC Dec Our previous works on neutrino reaction single pion production(Delta region) nuclear coherent pion production.
12 February 2003 M.Sakuda Neutrino - Nucleus Interactions Low Energy Neutrino-Nucleus Interactions Makoto Sakuda (KEK) in collaboration with C.Walter,
Shanghai Elliptic flow in intermediate energy HIC and n-n effective interaction and in-medium cross sections Zhuxia Li China Institute of Atomic.
Extending the Bertini Cascade Model to Kaons Dennis H. Wright (SLAC) Monte Carlo April 2005.
Realistic Calculations of Neutrino-Nucleus Reaction Cross sections T.S. Kosmas Realistic Calculations of Neutrino-Nucleus Reaction Cross sections T.S.
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
-NUCLEUS INTERACTIONS OPEN QUESTIONS and FUTURE PROJECTS Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
Precision Measurement of R L and R T of Quasi-Elastic Electron Scattering In the Momentum Transfer Range 0.55GeV/c≤|q|≤1.0GeV/c* Yan Xinhu Department of.
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
Duality: Recent and Future Results Ioana Niculescu James Madison University Hall C “Summer” Workshop.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
M. Cobal, PIF 2003 Resonances - If cross section for muon pairs is plotted one find the 1/s dependence -In the hadronic final state this trend is broken.
1 Physics Requirements on Reconstruction and Simulation Software Jorge G. Morfín - Fermilab.
March 2, 2011 TJRPhysics Processes Missing from our Current Simulation Tools 1 Tom Roberts Muons, Inc. This is the current list − Please help us to complete.
Three-body radiative capture reactions in astrophysics L.V. Grigorenko K.-H. Langanke and M. Zhukov FLNR, JINR, Dubna and GSI, Darmstadt.
NEUTRON SKIN AND GIANT RESONANCES Shalom Shlomo Cyclotron Institute Texas A&M University.
Lawrence Livermore National Laboratory Effective interactions for reaction calculations Jutta Escher, F.S. Dietrich, D. Gogny, G.P.A. Nobre, I.J. Thompson.
Study on ν-A Reaction Cross Sections within CRPA Jeong-Yeon LEE and Yeong-Duk KIM Sejong University, KOREA.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Neutrino cross sections in few hundred MeV energy region Jan T. Sobczyk Institute of Theoretical Physics, University of Wrocław (in collaboration with.
DIRECT AND SEMIDIRECT NEUTRON RADIATIVE CAPTURE BY MEDIUM-HEAVY MASS NUCLEI: A NEW VERSION OF THE SEMIMICROSCOPIC DESCRIPTION B.A. Tulupov 1, M.H. Urin.
THEORETICAL PREDICTIONS OF THERMONUCLEAR RATES P. Descouvemont 1.Reactions in astrophysics 2.Overview of different models 3.The R-matrix method 4.Application.
Coherent Pion Production induced by neutrino and hadron beam Yasuhiro SAKEMI Research Center for Nuclear Physics (RCNP) Osaka University Contents Physics.
PROPERTIES OF HIGH-ENERGY ISOSCALAR MONOPOLE EXCITATIONS IN MEDIUM-HEAVY MASS SPHERICAL NUCLEI M. L. Gorelik 1), S. Shlomo 2), B. A. Tulupov 3), M. H.
Comparison of quasi-elastic cross sections using spectral functions with (e,e') data from 0.5 GeV to 1.5 GeV Hiroki Nakamura (Waseda U). Makoto Sakuda.
Crystal Ball Collaboration Meeting, Basel, October 2006 Claire Tarbert, Univeristy of Edinburgh Coherent  0 Photoproduction on Nuclei Claire Tarbert,
Research of high energy collective states at high excitation energy in nuclei N. Alamanos, J. Arvieux, B. Berthier, B. Bonin, G. Bruge, M. Buenerd, J.
Cristina VOLPE BETA-BEAMS The beta-beam concept The baseline scenario The physics potential Conclusions LOW ENERGY BETA-BEAMS A N D The idea Motivation.
Bormio (Villars) Meeting 1969 Bormio Jan Participants!
Possible Ambiguities of Neutrino-Nucleus Scattering in Quasi-elastic Region K. S. Kim School of Liberal Arts and Science, Korea Aerospace University, Korea.
Jun Kameda (ICRR) RCCN International workshop at Kashiwa (Dec.10,2004)
Possible Ambiguities of Neutrino-Nucleus
SOLAR ATMOSPHERE NEUTRINOS
Neutrino astronomy Measuring the Sun’s Core
Quasielastic Scattering at MiniBooNE Energies
Self-consistent theory of stellar electron capture rates
SOLAR ATMOSPHERE NEUTRINOS
The Weak Structure of the Nucleon from Muon Capture on 3He
Nuclear excitations in relativistic nuclear models
Experimental determination of isospin mixing in nuclear states;
Impact of neutrino interaction uncertainties in T2K
Neutrino Reaction in Nuclear-Astro Physics
Some Nuclear Physics with Solar Neutrinos
Presentation transcript:

Dott. Antonio Botrugno Ph.D. course UNIVERSITY OF LECCE (ITALY) DEPARTMENT OF PHYSICS

Above nucleon emission threshold. The state of the emitted nucleon is not observed. Charge Current Neutral Current Inclusive cross section for neutrino scattering off nuclei:

A many-body theory to calculate nuclear-responses at low and intermediate transferred energy ( MeV) SCHEMATIC REPRESENTATION OF NUCLEAR RESPONSE:

Neutrinos are an ideal probe to investigate nuclear structure moreover they are able to excite nuclear modes not accessible to the electomagnetic probes. We need an accurate knowledge of the neutrino-nucleus cross sections to better understand detector response. WHY NEUTRINO - NUCLEUS ? NUCLEUS USED AS A DETECTOR OF NEUTRINOS NEUTRINOS USED AS PROBE TO STUDY NUCLEAR STRUCTURE Neutrino fluxes are sometimes not well known: - source uncertainty (solar, supernova, and geophysic neutrinos) - oscillation phenomena

Cross Section:

Nuclear Models: 1.Mean Field (MF) 2.Continuum Random Phase Approximation (RPA) 3.Final State Interaction (FSI) Microscopic Models Phenomenological Model

Single particle excitations E r Transferred Energy 1) Mean Field Model This model is inadequate in the Giant Resonance Region where collective excitations are important.

INPUT 1 Wood-Saxon Potential:

E x Transferred Energy 2) Continuum Random Phase Approximation Collective excitations

INPUT 2 Nucleon-Nucleon Interaction: Landau-Migdal Type 1 (LM1) Landau-Migdal Type 2 (LM2) Polarization Potential (PP) CC Processes

APPROXIMATION 3) Final State Interaction

Nuclear Response in a microscopic model: 1p-1h Correlations: np-nh Correlations:

APROXIMATION 3) Final State Interaction INPUT 3

Constraints and Prediction Power of the Models Photo-absorption. to set the FSI parameters Electron scattering. to test the prediction power of the model Sum rules to test the consistence of the calculation

Photo-absorption Data: J. Ahrens et al., Nucl. Phys. A 251, (1975), 479

Constraints and Prediction Power of the Models Photo-absorption. to set the FSI parameters Electron scattering. to test the prediction power of the model Sum rules to test the consistence of the calculation

Energy Region: I) Quasielastic Peak FSI RPA

Energy Region: II) Giant Resonance FSI RPA

Constraints and Prediction Power of the Models Photo-absorption. to set the FSI parameters Electron scattering. to test the prediction power of the model Sum rules to test the consistence of the calculation

Comparison between electron and neutrino scattering: In electron scattering the value of the cross section decreases with increasing incoming energy and/or scattering angle In neutrino scattering the value of the cross section increases with increasing incoming energy (and/or scattering angle in giant resonance region). The shapes of the neutrino cross sections are very different to those of the electron cross sections because: 1) the axial vector part of the weak current dominates in neutrino scattering. 2) the particle-hole transitions in CC processes are different to those of the electron scattering.

I) Giant ResonanceII) Quasielastic Peak CRPA Calculation

Comparison between electron and neutrino scattering: In electron scattering the value of the cross section decreases with increasing incoming energy and/or scattering angle In neutrino scattering the value of the cross section increases with increasing incoming energy (and/or scattering angle in giant resonance region). The shapes of the neutrino cross sections are very different to those of the electron cross sections because: 1) the axial vector part of the weak current dominates in neutrino scattering. 2) the particle-hole transitions in CC processes are different to those of the electron scattering.

Comparison between electron and neutrino scattering: I) Giant Resonance II) Quasielastic Peak CRPA calculationMF calculation

Conparison between electrons ed neutrinos scattering: In electron scattering the value of cross section decrease with increasing incoming energy and/or scattering angle In neutrino scattering the value of cross section increase with increasing incoming energy (and/or scattering angle in giant resonance region). Shapes of neutrinos cross sections are very different to electron cross section because: 1) the axial vector part of the weak current dominates in neutrino scattering. 2) the particle-hole transition in CC processes are different to electron scattering. Caution in testing the prediction accuracy of neutrino scattering using electron scattering. Caution in using the response function extracted from electron scattering to calculate neutrino cross sections.

Comparison between various models FG: Model of Smith e Monitz. Nuclear Models should be used only in their range of applicability. CRPA has a large energy range of applicability.

Angular distribution CRPA Calculation

The sensitivity of the cross section to the nucleon-nucleon interaction is % in giant resonance region. Total cross section including FSI effect Landau-Migdal 1 Landau-Migdal 2 Polarization Potential

The effect of FSI Model is a reduction of the cross section of about 10 – 15 % on all neutrino processes.

Some important proposals for the future Implementing the formalism for other nuclei. Application for know or expected neutrino fluxes: solar, atmospheric, supernova, pion decay, beta-beam. Other processes at low energy: Main results The sensitivity of the cross section to the nucleon-nucleon interaction is % in giant resonance region. The effect of FSI Model is a reduction of the cross section of about 10 – 15 % on all neutrino processes.

Thomas-Reiche-Kuhn sum rules:

Total cross section including FSI effect. Landau-Migdal 1 Landau-Migdal 2 Polarization Potential