Anomalies of low multipoles of WMAP

Slides:



Advertisements
Similar presentations
Latest Results from WMAP: Three-year Observations Eiichiro Komatsu (UT Austin) Texas Symposium in Melbourne December 15, 2006.
Advertisements

Planck 2013 results, implications for cosmology
The Ability of Planck to Measure Unresolved Sources Bruce Partridge Haverford College For the Planck Consortium.
Cosmic Microwave Background, Foregrounds and Component Separation What are foregrounds and how to deal with them in CMB data analysis Carlo Baccigalupi,
Foreground cleaning in CMB experiments Carlo Baccigalupi, SISSA, Trieste.
Cleaned Three-Year WMAP CMB Map: Magnitude of the Quadrupole and Alignment of Large Scale Modes Chan-Gyung Park, Changbom Park (KIAS), J. Richard Gott.
1 Thesis Defense Talk Tuhin Ghosh (IUCAA) under the supervision of Prof. Tarun Souradeep (IUCAA) 5 th of March, 2012 Galactic and Cosmological Signals.
Systematic effects in cosmic microwave background polarization and power spectrum estimation SKA 2010 Postgraduate Bursary Conference, Stellenbosch Institute.
Cosmic Microwave Background & Primordial Gravitational Waves Jun-Qing Xia Key Laboratory of Particle Astrophysics, IHEP Planck Member CHEP, PKU, April.
Large-angle anomalies in the microwave background: Are they real? What do they mean? Ted Bunn University of Richmond TexPoint fonts used in EMF. Read the.
Cosmology topics, collaborations BOOMERanG, Cosmic Microwave Background LARES (LAser RElativity Satellite), General Relativity and extensions, Lense-Thirring.
The Low-Order Multipoles and Dust in the Vicinity of the Solar System Valeri Dikarev 1,2,4, Oliver Preuß 1 Sami Solanki 1 Harald Krüger 1,2, Alexander.
Constraints on Material, Size and Abundance of Interplanetary Dust from the WMAP Data Valeri Dikarev 1,2,4, Oliver Preuß 1 Sami Solanki 1 Harald Krüger.
Contamination of the CMB Planck data by galactic polarized emissions L. Fauvet, J.F. Macίas-Pérez.
WMAP. The Wilkinson Microwave Anisotropy Probe was designed to measure the CMB. –Launched in 2001 –Ended 2010 Microwave antenna includes five frequency.
Zeldovich-Sakharov program at RATAN-600 “Cosmological Gene” project Ground based support of the Space CMB Missions Y.Parijskij et al Special Astrophysical.
Cosmology After WMAP David Spergel Cambridge December 17, 2007.
The Cosmic Microwave Background. Maxima DASI WMAP.
Patricio Vielva Astrophysics Department (IFCA, Santander) Currently Astrophysics Group (Cavendish Lab., Cambridge) Wiaux, Vielva, Martínez-González.
University of Århus lunch talk, May 11, 2007 Large angle CMB anomalies and local structures Syksy Räsänen CERN Syksy Räsänen CERN.
Gary Hinshaw NASA/GSFC From Quantum to Cosmos, Airlie Center VA, July year Results from WMAP with a Glimpse Ahead.
1 On the road to discovery of relic gravitational waves: From cosmic microwave background radiation Wen Zhao Department of Astronomy University of Science.
What have we learnt from WMAP? Robert Crittenden Institute of Cosmology and Gravitation, Portsmouth, UK.
Is there a preferred direction in the Universe P. Jain, IIT Kanpur There appear to be several indications of the existence of a preferred direction in.
Separating Cosmological B-Modes with FastICA Stivoli F. Baccigalupi C. Maino D. Stompor R. Orsay – 15/09/2005.
Simulating the Interferometer In order to simulate the performance of an interferometer, 20 by 20 degree sections were extracted from the simulated CMB.
Glenn Starkman Dept. of Physics/CERCA/ISO Case Western Reserve University June 10-12, 2015 Princeton, NJ IAS Princeton, NJ Collaborators: C. Copi,
Cosmic Microwave Background and Planck: science and challenges Carlo Baccigalupi.
P olarized R adiation I maging and S pectroscopy M ission Probing cosmic structures and radiation with the ultimate polarimetric spectro-imaging of the.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Eiichiro Komatsu University of Texas at Austin Non-Gaussianity From Inflation April 19, 2006 CMB High-z Clusters LSS Observational Constraints on Non-Gaussianity.
Early times CMB.
ArXiv: [hep-ph] arXiv: [astro-ph.CO] With Konstantinos Dimopoulos and Mindaugas Karčiauskas. Jacques M. Wagstaff VECTOR CURVATON MODEL.
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
CMB observations and results Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
The CMB TE Cross Correlation and Primordial Gravitational Waves Nathan Miller CASS Journal Club 11/6/07.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Joint analysis of Archeops and WMAP observations of the CMB G. Patanchon (University of British Columbia) for the Archeops collaboration.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Hemispherical Power Asymmetry 郭宗宽 昆明 anomalies in CMB map the quadrupole-octopole alignment power deficit at low- l hemispherical asymmetry.
Chao-Lin Kuo Stanford Physics/SLAC
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Collaborators within DK-Planck community Lung-Yih Chiang (NBI) Andrei Doroshkevich (TAC,ASC FIRAN) Per Rex Christensen (NBI) Igor D. Novikov ( NBI) Pavel.
EBEx foregrounds and band optimization Carlo Baccigalupi, Radek Stompor.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
1 The Planck view of CMB Contamination from Diffuse Foregrounds Carlo Baccigalupi On Behalf of the Planck Collaboration KITP Conference, April 2013.
Adventures in Parameter Estimation Jason Dick University of California, Davis.
Planck Report on the status of the mission Carlo Baccigalupi, SISSA.
Observation and Data Analysis Activityin SPOrt and BaR-SPOrt Exp.s Ettore Carretti Bologna 7-9 January 2004.
2-Day IDAPP meeting INAF-IASF Bologna Student: Pietro Procopio Dr. Carlo Burigana University of Ferrara Dr. Nazzareno Mandolesi Internal tutor: External.
Prospects for Testing Inflation with Planck Portsmouth 29 th June 2009.
Blind Component Separation for Polarized Obseravations of the CMB Jonathan Aumont, Juan-Francisco Macias-Perez Rencontres de Moriond 2006 La.
CMB, lensing, and non-Gaussianities
150GHz 100GHz 220GHz Galactic Latitude (Deg) A Millimeter Wave Galactic Plane Survey with the BICEP Polarimeter Evan Bierman (U.C. San Diego) and C. Darren.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Attempts to explain CMB Large-scale Anomalies Kin-Wang Ng ( 吳建宏 ) Academia Sinica, Taiwan NTU String Group, June 18, 2010 Thanks: Hsien-Chun Wu, I-Chin.
DISCOVERY A Unique Center with Unique Opportunities Direct and unique access to data from the most powerful experiments available today : –The Large Hadron.
Detecting the CMB Polarization Ziang Yan. How do we know about the universe by studying CMB?
PLANCK TEAM of the DISCOVERY Center. The most mysterious problems.
Planck working group 2.1 diffuse component separation review Paris november 2005.
The Planck view of CMB Contamination from Diffuse Foregrounds
CMB physics Zong-Kuan Guo 《现代宇宙学》
Planck mission All information and images in these slides can be found browsing through
12th Marcel Grossman Meeting,
A Measurement of CMB Polarization with QUaD
Non-Gaussianity at low and high multipoles from WMAP data
Separating E and B types of CMB polarization on an incomplete sky Wen Zhao Based on: WZ and D.Baskaran, Phys.Rev.D (2010) 2019/9/3.
LFI systematics and impact on science
Presentation transcript:

Anomalies of low multipoles of WMAP and Planck missions: what are they ? Oleg Verkhodanov Special astrophysical observatory of Russian Academy of Sciences

Wilkinson Microwave Anisotropy Probe (WMAP, NASA) 2001-2011 5 frequencies: 23, 33, 41, 61, 94 GHz Best determination of cosmological parameters in 2011 !

Planck mission, ESA Low Frequency Instrument: 30,44,70 HFI: 100, 143, 217, 353, 545, 857 GHz 2010-2013 1) 2) Zeldovich-Sunyaev effect 3) Gravitational waves in the B-mode of polarization ?

Observations

Data analysis of CMB Registration: time odered data: T(t)=T(l,b) Pixelization: map-making and restoration data in pixels Component separation Multipole analysis Pixel statistics of the CMB map Angular power spectrum analysis and determination of cosmological parameters

Component separation

WMAP observational bands

Component separation: Signal = (CMB + Synchrotron+dust+FreeFree+radiosouces)*Beam + Noise

Two basic properties of CMB: 1) Black body emission — same temperature at all wavelengthes; 2) Correlation of CMB and foregrounds should be close to zero: because CMB is a random gaussian process

The maps WMAP 9, Lmax=150 (Hinshaw et al., 2012) Planck collaboration, 2013 Planck, Lmax=150 Lmax = 150

Masks

Angular power spectrum of CMB

The spectra WMAP 9, 2012 Planck 2013

Let us go to data

Legacy Planck Archive (LPA) http://www.sciops.esa.int/index.php?page=Planck_Legacy_Archive&project=planck 1) 4 CMB maps 2) maps at observational bands (30, 44, 70, 100, 143, 217, 353,545, 857 GHz) 3) CO emission maps 4) Maps of dust 5) Maps of galactic low frequency emission (synchrotron + free-free) 6) Zodiac light maps 7) Maps of gravitational lensing 8) y-comptonization maps 9) Masks

Planck maps Observational frequency maps 30GHz 44GHz 70GHz 100GHz

Planck maps: component separation

Legacy Planck Archive (LPA) http://www.sciops.esa.int/index.php?page=Planck_Legacy_Archive&project=planck

Maps WMAP9 of Planck mission

Power spectrum

Cosmological results: WMAP9 and Planck data http://lambda.gsfc.nasa.gov No revolution...

CMB for neutrino parameters 1) 2) 3) 4)

«Bad» spots...

WMAP CMB anomalies 1) Cold Spot 2) Axis of Evil 3) Primirdial non-gaussinity (low limit by Planck data) 4) Violation of the power spectrum parity 5) Asymmetry 'North — South' in galactic coordinate system 6) New anomaly: too low amplitude of low harmonics

Let us look at some anomalies...

Cold Spot (Rudnick et al., 2007) CMB NVSS Radio sources Cold Spot < -5sigma (Rudnick et al., 2007) Part of octupole 1) Huge Sachs-Wolfe effect (Rudnick et al, 2007) 2) Anistropic expansion (Jaffe et al., 2005) 3) Topological defect [texture] (Cruz et al., 2007,2008, Planck 2013 ?) 4) Artifact ? 5) Galactic phenomena (M.Hansen et al., 2012)

Axis of Evil

Problems of WMAP quadrupole Axis of Evil: planarity + alignment (Land & Magueijo, 2005) Amplitude

What is the reason ? 1) Component separation (Doroshkevich, Verkhodanov, 2010) 2) Kouper Belt (Hansen et al. 2011) 3) Moving in Local Group of galaxies? (Tegmark et al., 2004) 4) Something else... 5) It is absent...

Axis of Evil (Planck data) Copi et al., arXiv:1311.4562: direction of our motion exists

Primordial non-gaussianity ?

Primordial non-gaussianity ? 1) Obtained with bispectrum 2) Low multimoples anomalies exist

Low multipoles in Planck

Low multipoles in WMAP L=2 L=3 L=4 L=6 L=7 L=5 L=8 L=9 L=10

Asimmetry North-South Planck CMB CMB and Bianchi 7h anisotropy model ?

Violation of power spectrum parity

Power spectrum and separate multipoles

Maps, L<=100 SMICA NILC SEVEM WMAP9

Power spectrum C(l), l<=50 Planck, WMAP

L=5 - WMAP Planck, SMICA =

L=7 - WMAP Planck, SMICA =

L=11 - WMAP Planck, SMICA =

L=70 Planck, SMICA NILC WMAP SEVEM

with Suynaev-Zeldovich effect ? Cosmology with Suynaev-Zeldovich effect ? Problem with cluster parameters ? Planck: optic and mm/submm centers differ from X-ray.

Missed sources in the Planck data: radio sources at sigma level < 3 sigma Awaited source of the secondary anistropy: >20000 radio galaxies ? 0015+0501 0226+0512 0311+0507, z=4.514 1113+0436 RG in cluster ? 0427+0457 0225+0506 0302+0456

SZ-effect

30 44 70 CMB 100 143 217 353 545 0702+0440 0748+0452 0756+0506 0924+0508 1022+0450

Observational channel of 217 GHz: what is unusual ?

Data of 217 GHz: what is unusual ? 1) Very close to CMB map outside the Galactic plane, but let us remember WMAP bands:

Data of 217 GHz: what is unusual ? 1) Close to the CMB map 2) Calibration problem ? (Spergel et al., arXiv:1312.3313) If remove the 217 GHz channel, then it can be obtained accurate restoration of the WMAP cosmology

Stephen Hawking «stamp» :) WMAP Planck,SMICA

Summary What have we wait for ? and what to do ? 1) WMAP and Planck data have practically the same low multipole anomalies 2) The difference of power spectra looks like one due to systematic effects of maps prepartion 3) We are waiting for a new release in June 2014: Maps of temperature anisotropy and polarization 4) Data are comparatively good (in resolution and sensetivity) when we take into account strangeness

Корреляция: (Chаnnel — CMB) * CMB

Карты (и их характеристика)

Карты SMICA NILC SEVEM

Фазы

Фазы SMICA NILC SEVEM

Фазы, L<=4096 SMICA SEVEM

Фазы, L<=256 SMICA SEVEM

Чтобы не забыть... WMAP: 2 карты Тегмарка (Chiang et al. 2003)

Космологические результаты WMAP9 и Planck http://lambda.gsfc.nasa.gov Революции нет ... Так это прекрасно !

Приложения

Приложение 1. Мультипольное разложение

Multipole expansion L = 2 (quadrupole) L =3 (octupole) L = 5 L = 4

Квадруполь = + L=2 (2,0) + + (2,1) (2,2)

Октуполь = + L=3 (3,0) + + (3,1) (3,2) (3,3)

Приложение 2: негауссовость Для простейшей инфляционной модели Возмущения плотности -> возмущения CMB: Первичная негауссовость