MEG II 実験のための SiPM を用いた 陽電子タイミングカウンターのシミュレーションによる性能評価 Development of the waveform simulation for Positron Timing Counter with SiPM for MEG II Experiment.

Slides:



Advertisements
Similar presentations
Sci-Fi tracker for IT replacement 1 Lausanne 9. December 2010.
Advertisements

MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.
Comparison of 3 types of scintillator strips and 2 types of reflector films Miho NISHIYAMA Shinshu-U Light yield of 3 scintillator strips have been measured.
Study of the MPPC Performance - contents - Introduction Fundamental properties microscopic laser scan –check variation within a sensor Summary and plans.
Performance of MPPC using laser system Photon sensor KEK Niigata university, ILC calorimeter group Sayaka IBA, Hiroaki ONO, Paul.
Study of Photon Sensors using the Laser System 05/7/12 Niigata University, Japan Sayaka Iba, Editha P. Jacosalem, Hiroaki Ono, Noriko.
MEG実験アップグレードに向けたMPPC読み出しによる 新しいタイミングカウンターの研究開発
Mass test of MPPC with a prototype of MEG II liquid xenon detector
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Characterization of Silicon Photomultipliers for beam loss monitors Lee Liverpool University weekly meeting.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
MPPC R&D status Kobe Univ. CALICE collaboration meeting Yuji SUDO Univ. of Tsukuba ~ contents ~ Introduction Linearity curve Recovery time.
Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
MPPC Radiation Hardness (gamma-ray & neutron) Satoru Uozumi, Kobe University for Toshinori Ikuno, Hideki Yamazaki, and all the ScECAL group Knowing radiation.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Salvatore Tudisco The new generation of SPAD Single Photon Avalanche Diodes arrays I Workshop on Photon Detection - Perugia 2007 LNS LNS.
SiPM を用いたシンチレーションカウンターによる 細分化ポジトロン時間測定器のビーム試験結果 西村美紀 ( 東大 ) 内山雄祐(素セ)、大谷航(素セ)、 M. de Gerone ( Genova Univ. )、 Flavio Gatti(Genova Univ.) 、調翔平(九 大) 他 MEGコラボレーション.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
MEG II 実験のための 陽電子タイミングカウンターの開発 PSI でのハイレートビーム試験 Development of Positron Timing Counter with SiPM for MEG-II Experiment Beam Test Result in the high rate.
Start Counter Collaboration Meeting September 2004 W. Boeglin FIU.
MEG II 実験 液体キセノンガンマ線検出器に用いる 光検出器 MPPC の 実装に向けた最終試験 家城 佳 他 MEG II collaboration + 九大の方々.
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
MEG 2009 現状と展望 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション 日本物理学会 2009 年秋季大会 甲南大学岡本キャンパス.
1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration.
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group May 29 – Jun 4 DESY Introduction.
MEG II 実験のための 陽電子タイミングカウンター実機建設 Construction of Positron Timing Counter for MEG II experiment 西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 2015年 秋季大会 大阪市立大学(杉本キャンパス)
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Status of photon sensor study at Niigata University -- SiPM and MPPC -- Photon sensor mini workshop 05/9/16 University Niigata University.
28 June 2007G. Pauletta: ALCPG Tests of IRST SiPMs G. Pauletta Univ. & I.N.F.N. Udine Outline 1.IRST SiPMs : baseline characteristics 2.first application.
R&D of Calorimeter using Strip/Block Scintillators with SiPM
SiPM for CBM Michael Danilov ITEP(Moscow) Muon Detector and/or Preshower CBM Meeting ITEP
Performance of new MPPC Nov. 21 Korea-Japan joint meeting Takashi Maeda Hideki Yamazaki Yuji Sudo (University of Tsukuba) --- Contents ---
SiPM from ST-Microelectronics Nepomuk Otte & Hector Romo Santa Cruz Institute for Particle Physics University of California, Santa Cruz
Beta-ray test for strip scintillator readout MPPC GLD Cal group KEK 06/2/28 (Tue) Niigata university Sayaka IBA.
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
R&D of Calorimeter using Strip/Block Scintillator with SiPM E.P. Jacosalem, S. Iba, N. Nakajima, H. Ono, A.L. Sanchez & H. Miyata Niigata University ILC.
Comparison of 3 types of scintillator strips Miho NISHIYAMA Shinshu-U Light yield of 3 scintillator strips have been measured using b-ray source. 1. fiber.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan for the GLD Calorimeter.
Status of NEWCHOD E.Guschin (INR), S.Kholodenko (IHEP), Yu.Kudenko (INR), I.Mannelli (Pisa), O.Mineev (INR), V.Obraztsov (IHEP), V.Semenov(IHEP), V.Sugonyaev.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Silicon Photomultiplier Development at GRAPES-3 K.C.Ravindran T.I.F.R, OOTY WAPP 2010 Worshop On behalf of GRAPES-3 Collaboration.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
マイクロメッシュを用いた 三次元電場構造型μ-PICの開発
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
Performance of LYSO and CeBr3 crystals readout by SiPM
大強度
K. Sedlak, A. Stoykov, R. Scheuermann
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
Stefan Ritt Paul Scherrer Institute, Switzerland
Development of hybrid photomultiplier for Hyper-Kamiokande
md-NUV PET project meeting
MPPC for T2K Fine-Grained Detector
MEG II実験 液体キセノン検出器の建設状況
Daisuke Kaneko, ICEPP, Univ. of Tokyo on behalf of MEG collaboration
R&D of MPPC in kyoto M.taguchi.
西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 第73回年次大会(2018年) 東京理科大学(野田キャンパス)
The MPPC Study for the GLD Calorimeter Readout
Performance test of a RICH with time-of-flight information
Hamamatsu’s SiPM (MPPC) Characteristics and Latest Developments
Presentation transcript:

MEG II 実験のための SiPM を用いた 陽電子タイミングカウンターのシミュレーションによる性能評価 Development of the waveform simulation for Positron Timing Counter with SiPM for MEG II Experiment 吉田昂平 ( 東大 ) 他 MEG コラボレーション 日本物理学会 2015 年秋季大会@大阪市立大学 1

Topics  Timing Counter Upgrade  TC Software  Waveform simulation  Single SiPM measurement  SPICE simulation  Result of the MC simulation  Summary 2

Timing Counter Upgrade  Pixelated Timing Counter  To measure the time of positron from μ + → e + γ  One counter consists of fast plastic scintillator and SiPM  Total 512 counters at upstream and downstream  It has good timing resolution by multiple hits  Low pileup effect under high rate μ  Good time resolution (~30ps) is demonstrated at the beam test Lxe γ -ray detector Timing Counter (TC) Drift Chamber μ γ e+e+ Plastic scintillator bar + PMT Fast plastic scintillator+ SiPM かえる MEG-II detector target Timing Counter for MEG Upgraded Timing Counter for MEG II 3

Single Counter 120mm 5mm 40mm or 50mm PCB  Fast Plastic scintillator BC422 Rise time : < 20ps Light output : 55% of Anthracene Peak wavelength : 370 nm Light attenuation : 8cm  120×40×5mm 3, 120×50×5mm 3  Covered by Mirror type reflector (3M ESR film) and black sheet (Tedlar)  SiPM (ASD-NUV3S-P High-Gain (MEG))  3×3mm 2,3600pix made by AdvanSiD  SiPM array (6series) on the PCB  2ch readout from both side of the counter  SiPM and Scintillator connected by optical cement Timing Resolution ~75ps (for 4cm counter) 4 SiPM array optical fiber

Overall of TC software  By MC simuration based on geant4  Optical photon is generated in counter and detected photon timing at SiPM can be get by photon tracking Waveform simulation Event generation Waveform analysis Clustering Hit reconstruction Today’s main topic  Simulate the waveform from the SiPM by MC photon pulse  Estimate for each channel  Timing  Charge  etc…  Estimate for each counter  Timing  position  etc…  Clustering the N hit counter for same positron by tracking Final goal is TC full simulation  Convoluting the 1 p.e. waveform and optical photon pules for each optical photon from MC simulation 5 Simulation reconstruction Get positron timing Measurement  Data taking by waveform digitizer DAQ  Clustere the N hits counters by tracking at Drift chamber and re-tracking at TC to reconstruct the positron timing

Waveform simulation  Waveform simulation  To study the effects of pile up, dark noise, crosstalk,after pulse for timing resolution  To evaluate performance and understand the detector  Waveform simulation method 1. Scintillation photon is generated and tracked by MC 2. Detected photon timing at SiPM is got 3. Convolute the photon pulse and 1p.e. response of SiPM array Photon pulse from MC t 1p.e. response + + ・・・ 1p.e. waveform of SiPM array is necessary  However, it is difficult to measure 1p.e. signal for 6 series SiPM because of high dark rate  1p.e. waveform of SiPM array is simulated from 1p.e. waveform of single SiPM 6 by SPICE 1. Raw 1p.e. waveform from single SiPM by measurement 2. Simulate SiPM circuit and set the parameters by SPICE to get the 1p.e. waveform for single SiPM 3. Simulate the 1p.e. waveform for SiPM array by SPICE ・ SPICE ・ Measurement ・ SPICE 4. Convolute the photon pulse and 1p.e. waveform from SiPM ・ bartender Flow chart w/ shaping

Measurement for Single SiPM  It is necessary to measure these topics for single SiPM to get 1p.e. response from SiPM array and input property to simulation  1p.e. waveform of single SiPM  Gain  Dark rate  Crosstalk probability  Single p.e. timing resolution (SPTR) Setup Thermal chamber SiPM is mounted by conductive epoxy SiPM : same to actual TC (ASD-NUV3S-P High-Gain (MEG)) OV : 3.0V 30 degree LASER : Picosecond Light Pulsar (Hamamatsu PLP-10) wavelength 401nm For measurement of timing resolution Trigger : Random by pocket pulsar for Dark signal : LASER SYNC for measurement of timing resolution Signal Timing : constant fraction time  Waveform digitizer SiPM AMP HV LASER Controller Pocket pulsar fiber LASER light 7 LASER SYNC SiPM

Measurement for Single SiPM  Gain ~ 1.95 × 10 6  By integrating average 1p.e. waveform  Dark rate ~ 2.3 MHz (258kHz/mm 2 )  From poisson distribution  When k = 0, P(0)=Number of pedestal / Number of total event  Including the after pulse within 3.5ns from the peak  crosstalk ~ 0.17 (preliminary)  Number of 2p.e. and over event. / Number of 1p.e. and over event  Including the after pulse within 3.5ns from the peak  Single p.e. timing resolution (SPTR) ~ 130.8ps  Fitting function : sqrt(p0^2/N p.e. + p1^2) Input to simulation 1p.e. pedestal 8 Height distribution(w/ high-pass) Height[V] 1.p.e 2p.e.

Waveform for single SiPM  1p.e. average waveform for single SiPM from 100 waveforms  Selecting the waveforms which have no after pulse, flat baseline  Fitting function : [0]*(exp(-t/[ τ _rise])-[1]*exp(-t/[ τ _spike])-(1-[1])*exp(-t/[ τ _tail])) 1p.e. waveform SPICE  SPICE : Circuit simulation software  1p.e. waveform is simulated by equivalent circuit of SiPM  It is necessary to decide the circuit parameter Quenching resistance measurement LCR measurement Measurement each parameter 9 Average 1p.e. waveform τ _rise : 1.5ns τ _spike : 5.1ns τ _tail : 124ns 20mV 100ns

SiPM circuit model  Rq : Quenching resistance  Cq : Stray quenching capacitance  C D : p-n junction capacitance  Cg : Stray grid capacitance  N : Number of pixels Fired pixel ( N-1) pixels RqRq Cq CDCD Cg  Measurement to decide parameter  Rq is measured by I-V curve at forward bias  Cq, C D, Cg is estimated by SiPM Gain and LCR measurement Circuit model of N pixel SiPM 10 Rd Cathode Anode ・ Equivalent circuit for LCR measurement Reference : S. Seifert et al. ” Simulation of Silicon Photomultiplier Signals”, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, Vol. 56, No. 6: , 2009 p RpRp Rq/(N-1) C D *(N-1) Cq*(N-1)

Quenching resistance  SiPM pixels consist of diode and quenching resistance  quenching resistance is measured from I-V curve at forward bias  Rq = 974±13 k Ω i Rq p-n junction SiPM × N Diode characteristic Quenching resistance Diode Quenching resistance 11 i : current of 1pixel N : number of pixels Quenching resistance i q = Vq/Rq i = exp i d = i 0 (exp(eV d /kT) - 1)

LCR measurement  Rp and Cp is measured by LCR meter (HIOKI LCR HiTESTER )  LCR meter input sine wave and measure impedance and phase difference by Four-terminal Method  Rp and Cp are saturated at high frequency and high bias  So, we used the value at high frequency and high bias 12 Rp Cp C D ~ 97.0 fF Cq ~ 7.04 fF Cg ~ pF ・ From I-V curve ・ From SiPM Gain and LCR measurement Rq ~ k Ω Bias[V] Frequency[Hz] Rp[ Ω ] Cp[F]

SPICE simulation for single SiPM  Input the measured circuit parameter and simulate the 1p.e. waveform of single SiPM  The simulated waveform don’t match measured waveform  The parameters is adjusted as reproducing measured waveform  Probably, the uncertainty for Cq is large 13 Simulated 1p.e. waveform measured 1pe. waveform SiPM AMP 20mV 100ns Adjusted waveform Adjusted parameter Rq : 973.1k Ω → 1150k Ω (18.1 %) Cq : 7.04fF → 14.0fF (98.9 %) SPICE simulation

14 SPICE simulation for SiPM array  Simulating 1p.e. waveform for SiPM array by using the adjusted parameter  Shaping by pole zero cancelation  Including the actual long cable effect by measurement  Convoluting with photon timing pulse from MC convolute SiPM array AMP and shaping ・ Simulated waveform for single SiPM ・ Measured waveform for single SiPM ・ Simulated waveform for SiPM array (6series) ・ Simulated waveform for SiPM array with the shaping (pole zero cancelation) and the cable 20mV 100ns Photon pulse from MC 10ns

 A test counter (BC422,120×40×5 mm 3, no wrap, SiPM array on each side )  A reference counter (BC422, 5×5×5 mm 3, wrapped by teflon, 1SiPM) is set behind test counter  Irradiating e - from 90 Sr  Selecting the event of hitting reference counter MC simulation setup 15 e-e- Comparing with real measurement せっとあっぷくわしく e-e- Reference counter Test counter SiPM array SiPM array Side view Photon track (PDE changed to ~ 1/100 to see track ) Scintillator Scintillator setup Scintillation yield8400photons/MeV Attenuation length (adjusted)20.6 cm Refractive index1.58 Rise time0 s * Decay time1.6 ns * Reference : R. A. Lerche et al. ”Rise Time of BC-422 Plastic Scintillator<20ps”, Lawrence Livermore National Laboratory, P. O. Box 5503, L-473, Livermore, CA 94550

Comparison with real measurement  Simulated waveform matches the measured waveform very well especially rising part at same setup  PDE is set by matching charge in simulation  Timing resolution is estimated too small because these are not included  Electronics jitter (~20ps)  Dark noise  Crosstalk  After pulse 16 measured waveform simulated waveform 50ns 200mV σ =75.7ps σ =55.3ps measurement simulation ・ Timing resolution V sec counter time – reference time counter time

Summary and Prospect  Summary  1p.e. response of SiPM array is necessary for waveform simulation  Single SiPM property is measured  1p.e. response of single SiPM is got from single SiPM measurement and SPICE simulation  1p.e. response of SiPM array is simulated by SPICE  The waveform from counter is reproduced but timing resolution is too small by MC simulation because electronics jitter and noise is not included  Prospect  Try to measure 1p.e. response for SiPM array at low temperature  Including the effects of Reflector, dark noise, crosstalk, After pulse, noise  Time difference between SiPMs on the PCB  Parameter setting(PDE, reflection efficiency etc…)  Full simulation to study the effects of pile up, after pulse, cross talk for timing resolution 17

backup 18

LCR METER MPPC DC BIAS VOLTAGE UNIT Hi VOLTAGE A K BLACK BOX Setup for LCR meter measurement 19

Height shaped 20

6series circuit 21

Input PDE vs charge, npe 22

23