Hsing-Chih Chang Chien Hung-Chih Ou Tung-Chieh Chen Ta-Yu Kuan Yao-Wen Chang Double Patterning Lithography-Aware Analog Placement.

Slides:



Advertisements
Similar presentations
Linear Time Algorithm to Find All Relocation Positions for EUV Defect Mitigation Yuelin Du, Hongbo Zhang, Qiang Ma and Martin D. F. Wong ASPDAC13.
Advertisements

THERMAL-AWARE BUS-DRIVEN FLOORPLANNING PO-HSUN WU & TSUNG-YI HO Department of Computer Science and Information Engineering, National Cheng Kung University.
Gate Sizing for Cell Library Based Designs Shiyan Hu*, Mahesh Ketkar**, Jiang Hu* *Dept of ECE, Texas A&M University **Intel Corporation.
Optimization of Placement Solutions for Routability Wen-Hao Liu, Cheng-Kok Koh, and Yih-Lang Li DAC’13.
Native-Conflict-Aware Wire Perturbation for Double Patterning Technology Szu-Yu Chen, Yao-Wen Chang ICCAD 2010.
Topology-Aware Buffer Insertion and GPU-Based Massively Parallel Rerouting for ECO Timing Optimization Yen-Hung Lin, Yun-Jian Lo, Hian-Syun Tong, Wen-Hao.
Hsi-An Chien Ting-Chi Wang Redundant-Via-Aware ECO Routing ASPDAC2014.
A Size Scaling Approach for Mixed-size Placement Kalliopi Tsota, Cheng-Kok Koh, Venkataramanan Balakrishnan School of Electrical and Computer Engineering.
Methodology for Standard Cell Compliance and Detailed Placement for Triple Patterning Lithography Bei Yu, Xiaoqing Xu, JhihRong Gao, David Z. Pan.
Ripple: An Effective Routability-Driven Placer by Iterative Cell Movement Xu He, Tao Huang, Linfu Xiao, Haitong Tian, Guxin Cui and Evangeline F.Y. Young.
National Tsing Hua University Po-Yang Hsu,Hsien-Te Chen,
Paul Falkenstern and Yuan Xie Yao-Wen Chang Yu Wang Three-Dimensional Integrated Circuits (3D IC) Floorplan and Power/Ground Network Co-synthesis ASPDAC’10.
Coupling-Aware Length-Ratio- Matching Routing for Capacitor Arrays in Analog Integrated Circuits Kuan-Hsien Ho, Hung-Chih Ou, Yao-Wen Chang and Hui-Fang.
GREMA: Graph Reduction Based Efficient Mask Assignment for Double Patterning Technology Yue Xu, Chris Chu Iowa State University Form ICCAD2009.
An Optimal Algorithm of Adjustable Delay Buffer Insertion for Solving Clock Skew Variation Problem Juyeon Kim, Deokjin Joo, Taehan Kim DAC’13.
An ILP-based Automatic Bus Planner for Dense PCBs P. C. Wu, Q. Ma and M. D. F. Wong Department of Electrical and Computer Engineering, University of Illinois.
MCFRoute: A Detailed Router Based on Multi- Commodity Flow Method Xiaotao Jia, Yici Cai, Qiang Zhou, Gang Chen, Zhuoyuan Li, Zuowei Li.
Routability-Driven Blockage-Aware Macro Placement Yi-Fang Chen, Chau-Chin Huang, Chien-Hsiung Chiou, Yao-Wen Chang, Chang-Jen Wang.
38 th Design Automation Conference, Las Vegas, June 19, 2001 Creating and Exploiting Flexibility in Steiner Trees Elaheh Bozorgzadeh, Ryan Kastner, Majid.
Yield- and Cost-Driven Fracturing for Variable Shaped-Beam Mask Writing Andrew B. Kahng CSE and ECE Departments, UCSD Xu Xu CSE Department, UCSD Alex Zelikovsky.
A Cell-Based Row-Structure Layout Decomposer for Triple Patterning Lithography Hsi-An Chien, Szu-Yuan Han, Ye-Hong Chen, and Ting-Chi Wang Department of.
Triple Patterning Aware Detailed Placement With Constrained Pattern Assignment Haitong Tian, Yuelin Du, Hongbo Zhang, Zigang Xiao, Martin D.F. Wong.
Constrained Pattern Assignment for Standard Cell Based Triple Patterning Lithography H. Tian, Y. Du, H. Zhang, Z. Xiao, M. D.F. Wong Department of ECE,
Optimally Minimizing Overlay Violation in Self-aligned Double Patterning Decomposition for Row-based Standard Cell Layout in Polynomial Time Z. Xiao, Y.
Hsiu-Yu Lai Ting-Chi Wang A TPL-Friendly Legalizer for Standard Cell Based Design SASIMI ‘15.
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 3: Chip Planning © KLMH Lienig 1 Modern Floorplanning Based on B*-Tree and Fast.
Accurate Process-Hotspot Detection Using Critical Design Rule Extraction Y. Yu, Y. Chan, S. Sinha, I. H. Jiang and C. Chiang Dept. of EE, NCTU, Hsinchu,
Mixed Non-Rectangular Block Packing for Non-Manhattan Layout Architectures M. Wu, H. Chen and J. Jou Department of EE, NCTU HsinChu, Taiwan ISQED 2011.
A Topology-based ECO Routing Methodology for Mask Cost Minimization Po-Hsun Wu, Shang-Ya Bai, and Tsung-Yi Ho Department of Computer Science and Information.
Authors: Jia-Wei Fang,Chin-Hsiung Hsu,and Yao-Wen Chang DAC 2007 speaker: sheng yi An Integer Linear Programming Based Routing Algorithm for Flip-Chip.
1 Modern Floorplanning Based on Fast Simulated Annealing Tung-Chieh Chen* and Yao-Wen Chang* # Graduate Institute of Electronics Engineering* Department.
TSV-Aware Analytical Placement for 3D IC Designs Meng-Kai Hsu, Yao-Wen Chang, and Valerity Balabanov GIEE and EE department of NTU DAC 2011.
K.Yuan, J.Yang and D.Pan ECE Dept. Univ. of Texas at Austin
Low-Power Gated Bus Synthesis for 3D IC via Rectilinear Shortest-Path Steiner Graph Chung-Kuan Cheng, Peng Du, Andrew B. Kahng, and Shih-Hung Weng UC San.
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig 1 EECS 527 Paper Presentation High-Performance.
New Modeling Techniques for the Global Routing Problem Anthony Vannelli Department of Electrical and Computer Engineering University of Waterloo Waterloo,
Efficient Multi-Layer Obstacle- Avoiding Rectilinear Steiner Tree Construction Chung-Wei Lin, Shih-Lun Huang, Kai-Chi Hsu,Meng-Xiang Li, Yao-Wen Chang.
Wire Planning with consideration of Electromigration and Interference Avoidance in Analog Circuits 演講者 : 黃信雄 龍華科技大學 電子工程系.
NTUEE 1 Coupling-Constrained Dummy Fill for Density Gradient Minimization Huang-Yu Chen 1, Szu-Jui Chou 2, and Yao-Wen Chang 1 1 National Taiwan University,
Bus-Pin-Aware Bus-Driven Floorplanning B. Wu and T. Ho Department of Computer Science and Information Engineering NCKU GLSVLSI 2010.
Regularity-Constrained Floorplanning for Multi-Core Processors Xi Chen and Jiang Hu (Department of ECE Texas A&M University), Ning Xu (College of CST Wuhan.
Kwangsoo Han, Andrew B. Kahng, Hyein Lee and Lutong Wang
Tao Lin Chris Chu TPL-Aware Displacement- driven Detailed Placement Refinement with Coloring Constraints ISPD ‘15.
Register Placement for High- Performance Circuits M. Chiang, T. Okamoto and T. Yoshimura Waseda University, Japan DATE 2009.
Pattern Sensitive Placement For Manufacturability Shiyan Hu, Jiang Hu Department of Electrical and Computer Engineering Texas A&M University College Station,
Pattern Sensitive Placement For Manufacturability Shiyan Hu, Jiang Hu Department of Electrical and Computer Engineering Texas A&M University College Station,
1. Placement of Digital Microfluidic Biochips Using the T-tree Formulation Ping-Hung Yuh 1, Chia-Lin Yang 1, and Yao-Wen Chang 2 1 Dept. of Computer Science.
1 Efficient Obstacle-Avoiding Rectilinear Steiner Tree Construction Chung-Wei Lin, Szu-Yu Chen, Chi-Feng Li, Yao-Wen Chang, Chia-Lin Yang National Taiwan.
GLOBAL ROUTING Anita Antony PR11EC1011. Approaches for Global Routing Sequential Approach: – Route the nets one at a time. Concurrent Approach: – Consider.
Self-Aligned Double Patterning Decomposition for Overlay Minimization and Hot Spot Detection H. Zhang, Y. Du, M. D.F. Wong, R. Topaloglu Dept. of ECE,
LatchPlanner:Latch Placement Algorithm for Datapath-oriented High-Performance VLSI Design Minsik Cho, Hua Xiang, Haoxing Ren, Matthew M. Ziegler, Ruchir.
A Negotiated Congestion based Router for Simultaneous Escape Routing Q.Ma, T.Yan and Martin D.F. Wong Department of Electrical and Computer Engineering.
Po-Wei Lee, Chung-Wei Lin, Yao-Wen Chang, Chin-Fang Shen, Wei-Chih Tseng NTU &Synopsys An Efficient Pre-assignment Routing Algorithm for Flip-Chip Designs.
An Efficient Linear Time Triple Patterning Solver Haitong Tian Hongbo Zhang Zigang Xiao Martin D.F. Wong ASP-DAC’15.
Non-stitch Triple Patterning- Aware Routing Based on Conflict Graph Pre-coloring Po-Ya Hsu Yao-Wen Chang.
Simultaneous Analog Placement and Routing with Current Flow and Current Density Considerations H.C. Ou, H.C.C. Chien and Y.W. Chang Electronics Engineering,
ILP-Based Inter-Die Routing for 3D ICs Chia-Jen Chang, Pao-Jen Huang, Tai-Chen Chen, and Chien-Nan Jimmy Liu Department of Electrical Engineering, National.
Yu-Wei Wu Yi-Yu Shi Sudip Roy Tsung-Yi Ho3
Yen-Ting Yu Iris Hui-Ru Jiang Yumin Zhang Charles Chiang DRC-Based Hotspot Detection Considering Edge Tolerance and Incomplete Specification ICCAD’14.
Chin-Hsiung Hsu, Yao-Wen Chang, and Sani Rechard Nassif From ICCAD09.
Maze Routing Algorithms with Exact Matching Constraints for Analog and Mixed Signal Designs M. M. Ozdal and R. F. Hentschke Intel Corporation ICCAD 2012.
BOB-Router: A New Buffering-Aware Global Router with Over-the-Block Routing Resources Yilin Zhang1, Salim Chowdhury2 and David Z. Pan1 1 Department of.
LEMAR: A Novel Length Matching Routing Algorithm for Analog and Mixed Signal Circuits H. Yao, Y. Cai and Q. Gao EDA Lab, Department of CS, Tsinghua University,
By P.-H. Lin, H. Zhang, M.D.F. Wong, and Y.-W. Chang Presented by Lin Liu, Michigan Tech Based on “Thermal-Driven Analog Placement Considering Device Matching”
System in Package and Chip-Package-Board Co-Design
Outline Motivation and Contributions Related Works ILP Formulation
1 Double-Patterning Aware DSA Template Guided Cut Redistribution for Advanced 1-D Gridded Designs Zhi-Wen Lin and Yao-Wen Chang National Taiwan University.
11 Yibo Lin 1, Xiaoqing Xu 1, Bei Yu 2, Ross Baldick 1, David Z. Pan 1 1 ECE Department, University of Texas at Austin 2 CSE Department, Chinese University.
3Boston University ECE Dept.;
Technology Migration Technique for Designs with Strong RET-driven Layout Restrictions Xin Yuan, Kevin McCullen, Fook-Luen Heng, Robert Walker, Jason Hibbeler,
Presentation transcript:

Hsing-Chih Chang Chien Hung-Chih Ou Tung-Chieh Chen Ta-Yu Kuan Yao-Wen Chang Double Patterning Lithography-Aware Analog Placement

Outline Introduction DPL conflict handling The algorithm flow Experimental results Conclusions

Introduction DPL  decompose patterns of a layer into two sub-patterns and then use two masks to manufacture the two sub-patterns

DPL conflict  Two patterns separated by the distance less than S min belong to the same mask.

Analog Placement Problem Previous Works  corner stitching compliant B*-tree (CB-tree) [14] DPL is not considered in previous works.

Analog designers usually reduce mismatches by predefining masks (colors)

Preliminaries For constraint-driven analog placement, CB-tree is the most effective and efficient topological representation with module adjacency information

Review of Corner Stitching Corner stitching is a data structure for representing non-overlapping rectangular modules in a two- dimensional plane (called tile plane).

Analog Constraints Symmetry constraints  are use to place some pairs of modules symmetrically along a vertical or a horizontal symmetry axis. It can reduce mismatches of sensitive modules. Proximity constraints  are use to place modules at closest proximity to reduce process variation.

Problem Formulation Rectangular modules M = {mk|1 ≤ k ≤ |M|} Nets N = {nk|1 ≤ k ≤ |N|} Placement Constraints S = {sk|1 ≤ k ≤ |S|} Pre-coloring Constraints R = {rk|1 ≤ k ≤ |R|} Place all modules in M to minimize the total area, wirelength, and DPL conflict

DPL conflict handling Resolving an analog placement with DPL conflicts. extended conflict graph(ECG) to model the global relationship among patterns/modules.

Module Flipping

Extended Conflict Graph (ECG) The traditional conflict graph considers the information from a fixed layout. Since a poly can only be placed vertically, there are only two choices for module orientations: non-flipped and flipped.

Basic Integer Linear Programming (ILP) Formulation

ILP Problem-Size Reduction Connected Component Computation Two-Edge-Connected Component Computation  identify a bridge

The algorithm flow

Perturbation In stage 1 & 3 In stage 2

The Three-Stage Placement Flow

Tile Plane Updating  to create new tiles and update the corner stitches to record the neighbors for each tile.

Experimental results C++ programming language. Intel Xeon X GHz Linux workstation with 48GB memory. CPLEX12.3 [1] library to solve the ILP problems. Two industrial analog circuits Case1 and Case2.

Conclusions DPL-aware analog placement flow to simultaneously minimize area, wirelength, and DPL conflicts. Propose an extended conflict graph (ECG). Develop an ILP algorithm considering symmetry and pre-coloring constraints to minimize conflicts. A three-stage flow.