The European Future of Dark Matter Searches with Cryogenic Detectors H Kraus University of Oxford EURECA.

Slides:



Advertisements
Similar presentations
Edelweiss-II : status and first results A new generation of background-free bolometers for WIMP search X-F. Navick - CEA Saclay, IRFU, France LTD13 – Stanford.
Advertisements

Dante Nakazawa with Prof. Juan Collar
EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
Dark Matter search with EDELWEISS and beyond Gilles Gerbier CEA Saclay – IRFU Rencontres de Moriond- VHEPU march 15 th Expérience pour DEtecter.
M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
Background issues for the Cryogenic Dark Matter Search Laura Baudis Stanford University.
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Benjamin Schmidt, IEKP, KIT Campus North,
Direct search for Dark Matter with the EDELWEISS-II experiment: status and results Claudia Nones CSNSM-Orsay On behalf of the EDELWEISS-II collaboration.
R. Lemrani CEA Saclay Search for Dark Matter with EDELWEISS Status and future NDM ’06 Paris, September 3-9, 2006.
Possible merits of high pressure Xe gas for dark matter detection C J Martoff (Temple) & P F Smith (RAL, Temple) most dark matter experiments use cryogenic.
1 Edelweiss-II status Eric Armengaud (CEA), for the Edelweiss Collaboration Axion-WIMPs training workshop, Patras, 22/06/2007.
Present and Future Cryogenic Dark Matter Search in Europe Wolfgang Rau, Technische Universität München CRESSTCRESST EURECA ryogenic are vent earch with.
Present and future activities of the Garching group (E15)
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
Institute for Safety Research Dávid Légrády IP-EUROTRANS ITC2 Development of a Neutron Time-of-Flight Source at the ELBE Accelerator ELBE Neutron source.
1 Low radioactivity issues in EDELWEISS-II Low Radioactivity Techniques, LRT 2010 Sudbury, August 2010 Pia Loaiza, Laboratoire Souterrain de Modane,
21. October 2004 IDEA DBD Meeting, Heidelberg 150 Nd activities at TUM V. Lazarev 1, E. Nolte 1, L. Oberauer 1, F. Pröbst 2 1 -Technische Universität München,
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
GERDA Meeting GERDA – Meeting, Nov.9-11, GERDA Meeting Eberhard Karls Universität Tübingen.
EDELWEISS-II : Status and future
Dan Bauer Fermilab Users Meeting June 3, 2004 Status of Cold Dark Matter Searches Dan Bauer, Fermilab Introduction Scientific case compelling for cold.
Status of DRIFT II Ed Daw representing the DRIFT collaboration: Univ. of Sheffield, Univ. of Edinburgh, Occidental College, Univ. of New Mexico Overview.
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Cristina Cozzini (Oxford), IDM 2004, Edinburgh CRESST-II background discrimination: detection of 180 W natural decay in a pure alpha spectrum Paper submitted.
Direct Dark Matter Searches
Cryogenic particle detection at the Canfranc Underground Laboratory First International Workshop for the Design of the ANDES Underground Laboratory Centro.
From CDMSII to SuperCDMS Nader Mirabolfathi UC Berkeley INPAC meeting, May 2007, Berkeley (Marina) CDMSII : Current Status CDMSII Perspective Motivation.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University.
The AMS Transition Radiation Detector and the Search for Dark Matter Gianpaolo Carosi Lab for Nuclear Science, MIT The AMS Collaboration Lake Louise Winter.
A Study of Background Particles for the Implementation of a Neutron Veto into SuperCDMS Johanna-Laina Fischer 1, Dr. Lauren Hsu 2 1 Physics and Space Sciences.
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
Status of Surface Sensitive Bolometers University of Insubria – Como, Italy INFN – Milano, Italy Prague, Chiara Salvioni.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
VIeme rencontres du Vietnam
Dan Bauer - CDMS Project ManagerAll experimenters meeting - April 23, 2007 Cryogenic Dark Matter Search (CDMS) Progress at Soudan since last summer Successful.
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
CryoEDM – A Cryogenic Neutron-EDM Experiment Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus … but before: some.
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
Physics at Extreme Energies, Hanoi, July 2000 Dark Matter Search in the EDELWEISS expt G. Chardin DAPNIA/SPP, CEA-Saclay.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search.
EDELWEISS-II : Status and future Véronique SANGLARD CNRS/IN2P3/IPNLyon
DARK MATTER SEARCH Carter Hall, University of Maryland.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Ray Bunker (UCSB) – APS – April 17 th, 2005 CDMS SUF Run 21 Low-Mass WIMP Search Ray Bunker Jan 17 th -DOE UCSB Review.
I. Giomataris, CEA-Irfu-France
GERDA – a Search for Neutrinoless Double Beta Decay MPI für Physik, München Neutrinoless double beta decay and the GERDA experimentThe detector array and.
PMN07 Blaubeuren Segmented germanium detectors in 0νββ-decay experiments Kevin Kröninger (Max-Planck-Institut für Physik, München)
2008 European School of High-Energy Physics - Trest, Czech Republic - 19 August - 1st September Target Tracker Data Analysis In OPERA Experiment S. Dmitrievsky,
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University 1W. Rau – IPA 2014.
1 CRESST Cryogenic Rare Event Search with Superconducting Thermometers Jens Schmaler for the CRESST group at MPI MPI Project Review December 14, 2009.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
1 st : Mass Spectrometry on Heavy Molecules with Cryogenic Detectors - status Project Review 2004 PROTEOM 2 nd : Measurement of the Quenching Factors in.
A Search for Cold Dark Matter with Cryogenic Detectors at Frejus Underground Laboratory * EDELWEISS experiment 1.Experiment status and results for first.
Alex Howard, Imperial College Slide 1 July 2 nd 2001 Underground Project UNDERGROUND PROJECT – Overview and Goals Alex Howard Imperial College, London.
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
Leo Stodolsky 80th anniversary
From Edelweiss I to Edelweiss II
The CRESST Dark Matter Search Status Report
The Heidelberg Dark Matter Search Experiment
University of South Dakota
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Irina Bavykina, MPI f. Physik
Progress with cryogenic dark matter searches
Presentation transcript:

The European Future of Dark Matter Searches with Cryogenic Detectors H Kraus University of Oxford EURECA

Based on CRESST and EDELWEISS expertise, with additional groups joining. Baseline targets: Ge, CaWO 4, etc (A dependence) Mass: above 100 kg Timescale: after CRESST-II and EDELWEISS-II Started 17 March 2005 (meeting in Oxford) R&D: demonstrate CRESST/EDELWEISS European Underground Rare Event Calorimeter Array

United Kingdom Oxford (H Kraus, coordinator) Germany MPI für Physik, Munich Technische Universität München Universität Tübingen Universität Karlsruhe Forschungszentrum Karlsruhe CRESST + EDELWEISS + new forces EURECA Collaboration France CEA/DAPNIA Saclay CEA/DRECAM Saclay CNRS/CRTBT Grenoble CNRS/CSNSM Orsay CNRS/IPNL Lyon CNRS/IAP Paris CERN

Experiments – MSSM Predictions  = 10 − 6 pb: ~1 event/kg/day ~0.1 now reached  = 10 − 8 pb: ~1 event/kg/year CDMS-II, CRESST-II and EDELWEISS-II aims  = 10 − 10 pb: ~1 event/ton/year Next generation requires further x100 improvement!

Background Rates Major challenge: typical radioactivity … human body:~10 +6 decays/(kg day) … well above:~10 −4 events/(kg day) Substantial and robust discrimination required: tails of distributions; hard to understand, difficult to simulate with high precision. Entering un-chartered territory: need low event rate in ~keV energy range: atomic x-rays, not MeV as in ν experiments

Detection Techniques

Cryogenic Techniques Initial recoil energy Displace- ments, Vibrations Athermal phonons Ionization (~10 %) Thermal phonons (Heat) Scintillation (~1 %) Discrimination by combining phonon measurement with measurement of ionization or scintillation Phonon: most precise total energy measurement Ionization / Scintillation: yield depends on recoiling particle Nuclear / electron recoil discrimination.

EDELWEISS – Detectors Target: Cyl. Ge crystal, 320 g Ø 70 mm, h = 20 mm Phonon - signal: NTD-Ge (~ 20 mK) Ionisation - signal: Inner disc / outer guard ring

Phonon – Ionisation 252 Cf 60 Co Excellent resolution in both ionisation and phonon signals. Clean γ-calibration data: no event below Q = 0.7.

EDELWEISS 1 – Data Data: 22.6 kg.d shown. Probable surface event contamination at Q<0.7 Challenge: less than perfect charge collection for surface events

Identification of Backgrounds Germanium Surface Events Example of 3 rd population, affecting rejection efficiency. Quality of Rejection Importance of selection variable having good separation and resolution. More Rejection Signatures Recoil spectrum, coincidence, charge, scintillation, type of recoiling nucleus, etc.

EDELWEISS LSM (4800 m.w.e) 21×320g Ge with NTD 7×400g Ge with NiSb

EDELWEISS – New Cryostat Up to 120 Detectors

EDELWEISS – Shielding 20 cm lead 50 cm PE Muon veto

March 2005 May 2005 Edelweiss II installation at LSM May 2005: lead, upper and lower PE shields completed. Start μ-VETO installation. Summer: installation of cryostat. Autumn: first pulses.

CRESST – Detectors heat bath thermal link thermometer (W-film) absorber crystal Particle interaction in absorber creates a temperature rise in thermometer which is proportional to energy deposit in absorber Temperature pulse (~6keV) Resistance [m  ] normal- conducting super- conducting TT RR Width of transition: ~1mK Signals: few  K Stablity: ~  K

Phonon – Scintillation Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light separate calorimeter as light detector light reflector W-SPT 300 g CaWO 4 proof of principle Energy in light channel keV ee ] Energy in phonon channel [keV] high rejection: 99.7% > 15 keV 99.9% > 20 keV

300g Detector Prototype CRESST II: 33 modules; 66 readout channels

Run 28: Low Energy Distribution No Neutron Shield 90% of oxygen recoils below this line. Rate=0.87  0.22 /kg/day compatible with expec- ted neutron background (MC) kg days 90% of tungsten recoils Q = 40 below this line. No events

Upper Limits on Scalar WIMP- Nucleon Cross Section Cryogenic Detectors only

Expected Recoil Spectrum in GS Contribution of W recoils negligible for E > 12 keV σ  A 2 for WIMPs with spin-independent interaction WIMPs dominantly scatter on W (A=184) nuclei Neutrons mainly on oxygen MC simulation of dry concrete (Wulandari et al)

Quenching Factor Measurement PMT UV Laser W, O, Ca ions CaWO 4 crystal PTFE reflector collimator Ion source UV Laser desorbs singly or doubly charged ions from almost any material. Acceleration to 18 keV (or 36 keV for doubly charged). Mount CaWO 4 crystal on PMT at end of flight tube and record single photon counts with fast digitizer. Deflection plate for ion type selection target

Quenching Factors for CaWO 4

Upgrade Read out electronics: 66 SQUIDs for 33 detector modules and DAQ ready Neutron shield: 50 cm polyethylen (installation complete) Muon veto: 20 plastic scintillator pannels outside Cu/Pb shield and radon box. Analog fibre transmission through Faraday cage (ready) Detector integration in cold box and wiring (entering fabrication stage)

Excellent linearity and energy resolution at high energies Perfect discrimination of ,  from  s Identification of alpha emitters (internal, external) High Energy Performance

Decay of “stable” Tungsten Sm 152 Gd 144 Nd 180 W

Results from four runs (28.62 kg days) Half life T 1/2 = (1.8±0.2) × years Energy Q = (2516.4±1.1 (stat.)±1.2(sys.)) keV Decay of “stable” Tungsten-180

Evolution of Sensitivity

Signatures 1.Recoil energy spectrumEnergy resolution 2.Nuclear (not electron) recoilsDiscrimination 3.Coherence: μ 2 A 2 dependenceMulti-target 4.Absence of multiple interactionsArray 5.Uniform rate throughout volumeLarge Array 6.Annual modulation (requires many events)

EURECA Tasks Detector Development: improving rejection, optimizing size, mass production issues. Readout and Electronics: scalability. Cryogenic Environment: size, radiopurity, uptime. Neutron and Muon Backgrounds: measurement, simulation and shielding design. Extreme Low-background Materials: selection of materials, processing, handling, etc.

EURECA Strategy Some aspects covered by ILIAS working groups. Main thrust: demonstrate current experiments. EDELWEISS: new (larger) cryostat; improved shielding; 8kg Ge by end of 2005; reduction of surface events expected from improved radiopurity and/or use of NbSi sensors. Up to ~30kg target possible in cryostat. CRESST: new (66 channel) SQUID readout system; improved shielding; few kg CaWO 4 by end of 2005; continuous improvement scintillation signals. Up to ~10kg target possible in present cryostat.

Summary CRESST and EDELWEISS are on track to reaching LHC-relevant sensitivity; but major improvements w.r.t. present achievements will have to be shown. Cryogenic Detector Technology with nuclear recoil identification has the necessary potential for these improvements. The EURECA collaboration builds on CRESST and EDELWEISS experience aiming towards a European multi-target array for direct dark matter searches.