Status of Development of Metallic Magnetic Calorimeters A.Fleischmann, T. Daniyarov H. Rotzinger, M. Linck, C. Enss Kirchhoff-Institut für Physik Universität Heidelberg H. Eguchi, Y.H. Yong, G.M. Seidel Department of Physics Brown University
2 Metallic Magnetic Calorimeter Au:Er H
3 Calorimeter Signal 122 keV in Au:Er 300ppm satisfying agreement of theory and experiment signal size can be predicted! Resolution of optimized detector:
4 Gradiometer With Two Sensors: Two-Pixel Detector performance of pixels almost identical commercial SQUID chip M.B. Ketchen, IBM μm
5 two Au:Er 300 ppm sensors Gold absorber: 160 x 160 x 5 m 3 Heat capacity corresponds to a Bi absorber of 250 x 250 x 28 m 3 MMC Detector μm x 160 μm x 5 μm clean spectrum KαKα KβKβ
6 Resolution: K α - Line 55 Mn energy resolution 3.4 eV Raw Data natural linewidth
7 K β - Line 55 Mn A. Fleischmann, M. Linck, T. Daniyarov, H. Rotzinger, C. Enss, G.M. Seidel, Nucl. Instr. and Meth. A 520, 27 (2004).
8 Baseline Noise two Au:Er 300 ppm sensors Gold absorber: 160 x 160 x 5 m 3 one Au:Er 300 ppm sensors Gold absorber: 160 x 160 x 5 m 3 Spectrum: 3.5 eV because of Temperature stabilization problems
9 E/ E at 6 keV ionisation detectors 2 eV 6 eV 3.4 eV
10 Predicted Resolution for Different Detectors Resolution: Energy range: keV 250 x 250 x 5 m 3, Bi absorber Au:Er 900 ppm sensor, 35 m, h = 14 m T = 50 mK, 0 = s, 1 = s E FWHM = 0.7 eV Energy range: keV 120 x 120 x 0.5 m 3, Bi absorber Au:Er 900 ppm sensor, 20 m, h = 8 m T = 50 mK, 0 = s, 1 = s E FWHM = 0.1 eV
11 MMC Detectors for X Ray Astronomy increase detector speed not a problem micro-fabrication of MMCs schemes for arrays and multiplexing a problem, but likely to be solvable a very complex problem spot welded detector heat capacity J/K
12 MMC Arrays for X Ray Astronomy speed cross talk efficiency homogeneity power dissipation signal to noise complexity stability coupling schemes fabrication techniques layout and wiring schemes signal analysis schemes readout schemes ? ? MMC specific : non-contact readout non-dissipative method
13 Informal Collaboration on MMCs for Astronomy S.R. Bandler T.R. Stevenson F.S. Porter E. Figueroa-Feliciano C.K. Stahle R. Kelley S. Romaine R. Bruni A. Fleischmann M. Linck T. Daniyarov H. Rotzinger A. Burg C. Enss Berlin SAO G.M. Seidel Y.H. Kim Y.H. Huang H. Eguchi K.D. Irwin B.L. Zink G.C. Hilton D.P. Pappas J.N. Ullom M.E. Huber, Uni. Colorado Heidelberg Goddard Boulder J. Beyer D. Drung T. Schurig H.-G. Meyer R. Stolz S. Zarisarenko Jena
14 SAO development of deposition techniques for Au:Er integrate Au:Er sensors on SQUID chips
15 NASA - GSFC development of suitable absorbers Bi:Cu develop means of fabricating MMC mushrooms investigating different transformer schemes development of position sensitive MMCs MMC
16 NIST Boulder development of integrated MMCs investigating new schemes for MMCs: self-inductance MMCs develop optimized SQUIDs explore new multiplexing techniques develop fabrication methods Optimized SQUID Co-evaporated Au:Er Sensor Film Self-Inductance Meander Transformer
17 PTB Berlin development of optimizied SQUIDs high speed low-noise readout electronics
18 IPTH Jena development of optimized SQUIDs low noise readout electronics optimized sensor design
19 Brown/Heidelberg investigate alternative sensor materials study fundamental noise develop new sensor geometries develop deposition techniques for Au:Er optimize single pixel performance study properties of small arrays
20 MMCs can be a new exciting tool for X-ray astronomy Let’s work to make it happen Summary SOHO 304 Å
21 Problem: Slewrate too low slew rate of SQUID too low (100 0 /ms) limits the usable signal size feedback of Ketchen-SQUID to weak