Status of Development of Metallic Magnetic Calorimeters A.Fleischmann, T. Daniyarov H. Rotzinger, M. Linck, C. Enss Kirchhoff-Institut für Physik Universität.

Slides:



Advertisements
Similar presentations
Flex Circuit Design for CCD Application ECEN 5004 Jon Mah.
Advertisements

Task M2 – Advanced Materials and Techniques for Resonant Detectors Motivation : Reduce thermal noise contribution to the acoustic detector noise budget.
Noise Measurements W vs. T bath & Thermal Conductance Measurements NEP measurements at T bath = 311 mK for V BIAS = 1  V with predicted noise levels for.
X-Ray Astronomy Lab X-rays Why look for X-rays? –High temperatures –Atomic lines –Non-thermal processes X-ray detectors X-ray telescopes The Lab.
Tomsk Polytechnic University1 A.S. Gogolev A. P. Potylitsyn A.M. Taratin.
Basic Principles of X-ray Source Detection Or Who Stole All Our Photons?.....
Recent progress with TES microcalorimeters and signal multiplexing J. Ullom NIST NASA GSFC SRON J. Beall R. Doriese W. Duncan L. Ferreira G. Hilton R.
Readout ASIC Development VERITAS II Garching, 28 January 2014 Matteo Porro.
LTD12, Paris Microstructured magnetic calorimeter with meander shaped pickup coil A. Burck S. Kempf, S. Schäfer, H. Rotzinger, M. Rodrigues, T. Wolf, A.
Bragg Spectrographs for LCLS Diagnostics and Science D. Peter Siddons Zhong NSLS Brookhaven National Laboratory Upton, NY
CCD-style imaging for the JCMT. SCUBA-2 technology  the ability to construct large format detector arrays  signal readouts that can be multiplexed To.
TES Bolometer Array with SQUID readout for Apex
RUN HISTORY Preparation: 17/10Cryostat, pumps and electronics mounted in the cabin (total time 2h) 18/10Cooling down to 80mK. Resonances OK (SRON array)
X-Ray Spectroscopy. 1 eV 100 eV 10 eV Energy (keV) The need for high resolution X-ray spectroscopy Astrophysical Plasmas: Simulation of the emission from.
June X-Ray Spectroscopy with Microcalorimeters1 X-Ray Spectrometry with Microcalorimeters.
Electronics for first beam tests of diamond sensors Presented by: Igor Emeliantchik NC PHEP, Minsk:Konstantin Afanaciev, Igor Emeliantchik Alexander Ignatenko.
Daniele Pergolesi, Institut d’Astrophysique de Paris, Nov 14 th The MARE experiment on direct measurement of neutrino mass Daniele Pergolesi UNIVERSITY.
Low Temperature X-ray Detectors Caroline K. Stahle NASA / Goddard Space Flight Center.
Large area transition-edge sensor array for particle induced X-ray emission spectroscopy M Palosaari1, K Kinnunen1, I Maasilta1,
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
Rome, January 17th,2006 Flavio Gatti WHIM and Mission Opportunities TES microcalorimeters in the European context Flavio Gatti University and INFN, Genoa.
Netherlands Institute for Space Research Development of TES-microcalorimeter arrays and Frequency Domain Multiplexed read-out Henk Hoevers Division Sensor.
Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven.
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
1 Workshop on X-ray Mission Architectural Concepts Linthicum, MD December 14-15, 2011 Enabling Technologies for the High-Resolution Imaging Spectrometer.
XEUS cryogenic instrument October 2004 CRYOGENIC SPECTROMETER PROTOTYPE Rationale: Development and demonstration of technical readiness for future.
Precision Analysis of Electron Energy Deposition in Detectors Simulated by Geant4 M. Bati č, S. Granato, G. Hoff, M.G. Pia, G. Weidenspointner 2012 NSS-MIC.
MANU2: status report Maria Ribeiro Gomes* for the Genoa Group IAP, 14-Nov-05 * pos-doc under TRN HPRN-CT
DDEP 2012 | C. Bisch – Study of beta shape spectra 1 Study of the shape of  spectra Development of a Si spectrometer for measurement of  spectra 
Recent Progress in Silicon Microcalorimeters and Their Prospects for NeXT (and other missions) Caroline A. Kilbourne NASA Goddard Space Flight Center.
Munich-Centre for Advanced Photonics A pixel detector system for laser-accelerated ion detection Sabine Reinhardt Fakultät für Physik, Ludwig-Maximilians-Universität.
Pixel 2000 Workshop Christian Grah University of Wuppertal June 2000, Genova O. Bäsken K.H.Becks.
Instrumental Development in Japan for Future Missions 1.Si strip detectors(GLAST) 2.Supermirror technology 3.New hard-X/  detectors 4.TES calorimeters.
Metallic magnetic calorimeters (MMC) for high resolution x-ray spectroscopy Loredana GASTALDO, Markus LINCK, Sönke SCHÄFER, Hannes ROTZINGER, Andreas BURCK,
Development of CCDs for the SXI We have developed 2 different types of CCDs for the SXI in parallel.. *Advantage =>They are successfully employed for current.
PAUL SCHERRER INSTITUT M. Furlan I. Jerjen E. Kirk Ph. Lerch A. Zehnder Cryogenic Detectors Development at PSI.
F. GattiTAUP2007, Sendai, MARE an experiment for the calorimetric search of m  with sub eV sensitivity F.Gatti On the behalf of the Collaboration.
DEVELOPMENT OF BETA SPECTROMETRY USING CRYOGENIC DETECTORS M. Loidl, C. Le-Bret, M. Rodrigues, X. Mougeot CEA Saclay – LIST / LNE, Laboratoire National.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
Cryogenic Detectors and Test Infrastructure at the University of Leicester G.W. Fraser Space Research Centre, Michael Atiyah Building, Department of Physics.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
XEUS Cryogenic Instrument October 2004 Cryogenic X-ray sensor development in US, Europe and Japan Micro-calorimeters Doped - thermistors Astro-E2.
Characterization of noise and transition shapes in superconducting transition-edge sensors using a pulsed laser diode Dan Swetz Quantum Sensors Group NIST.
Ultra-low Field Nuclear Magnetic Resonance Measurements with SQUIDs
Metallic Magnetic Calorimeters for High-Resolution X-ray Spectroscopy D. Hengstler, C. Pies, S. Schäfer, S. Kempf, M. Krantz, L. Gamer, J. Geist, A. Pabinger,
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search.
1 MARE: Status and Perspectives Flavio Gatti University and INFN of Genoa on behalf of the MARE Collaboration NUMASS2010 INT Seattle, Feb. 9, 2010.
Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C.,
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
MARE Microcalorimeter Arrays for a Rhenium Experiment A DETECTOR OVERVIEW Andrea Giuliani, University of Insubria, Como, and INFN Milano on behalf of the.
1 MARE Direct determination of neutrino mass with Low Temperature Microcalorimeters Flavio Gatti University and INFN of Genoa CSNII, 29 Sept 2009.
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
Recent progress in ultra-low noise, ultra-low background detectors V. Marian, M.O. Lampert, B. Pirard, P. Quirin CANBERRA France (Lingolsheim) Workshop.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
STATUS OF R&D AT UCSB Paul Szypryt Mazin Lab August 26, 2013.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
Yong-Hamb Kim Development of cryogenic CaMoO 4 detector 2nd International Workshop on double beta decay search Oct. 7~ Oct. 8, 2010.
UNIVERSITY OF JYVÄSKYLÄ NSC Nanoscience Center Applications of cryogenic detectors in materials research: opportunities for novel instruments Kimmo Kinnunen.
DEVELOPMENT OF PIXELLATED SEMICONDUCTOR DETECTORS FOR NEUTRON DETECTION Prof. Christer Fröjdh Mid Sweden University.
Current status of R&D on MMC and TES and a full size crystal test setup Sang-jun Lee Seoul National University.
Institute for Photonics and Nanotechnologies
Microwave SQUID multiplexer for the readout of large MMC arrays
Cryogenic Particle Detectors in Rare event Searches
DESY contributions to MAPS DESY testbeam
Irina Bavykina, MPI f. Physik
HVCMOS Detectors – Overview
Radiation Detection via Transition Edge Sensor (TES)
MARE (microcalorimeter array for a rhenium experiment)
Presentation transcript:

Status of Development of Metallic Magnetic Calorimeters A.Fleischmann, T. Daniyarov H. Rotzinger, M. Linck, C. Enss Kirchhoff-Institut für Physik Universität Heidelberg H. Eguchi, Y.H. Yong, G.M. Seidel Department of Physics Brown University

2 Metallic Magnetic Calorimeter Au:Er H

3 Calorimeter Signal 122 keV in Au:Er 300ppm satisfying agreement of theory and experiment signal size can be predicted! Resolution of optimized detector:

4 Gradiometer With Two Sensors: Two-Pixel Detector performance of pixels almost identical commercial SQUID chip M.B. Ketchen, IBM μm

5 two Au:Er 300 ppm sensors Gold absorber: 160 x 160 x 5  m 3 Heat capacity corresponds to a Bi absorber of 250 x 250 x 28  m 3 MMC Detector μm x 160 μm x 5 μm clean spectrum KαKα KβKβ

6 Resolution: K α - Line 55 Mn energy resolution 3.4 eV Raw Data natural linewidth

7 K β - Line 55 Mn A. Fleischmann, M. Linck, T. Daniyarov, H. Rotzinger, C. Enss, G.M. Seidel, Nucl. Instr. and Meth. A 520, 27 (2004).

8 Baseline Noise two Au:Er 300 ppm sensors Gold absorber: 160 x 160 x 5  m 3 one Au:Er 300 ppm sensors Gold absorber: 160 x 160 x 5  m 3 Spectrum: 3.5 eV because of Temperature stabilization problems

9 E/  E at 6 keV ionisation detectors 2 eV 6 eV 3.4 eV

10 Predicted Resolution for Different Detectors Resolution: Energy range: keV 250 x 250 x 5  m 3, Bi absorber Au:Er 900 ppm sensor,  35  m, h = 14  m T = 50 mK,  0 = s,  1 = s  E FWHM = 0.7 eV Energy range: keV 120 x 120 x 0.5  m 3, Bi absorber Au:Er 900 ppm sensor,  20  m, h = 8  m T = 50 mK,  0 = s,  1 = s  E FWHM = 0.1 eV

11 MMC Detectors for X Ray Astronomy increase detector speed not a problem micro-fabrication of MMCs schemes for arrays and multiplexing a problem, but likely to be solvable a very complex problem spot welded detector heat capacity J/K

12 MMC Arrays for X Ray Astronomy speed cross talk efficiency homogeneity power dissipation signal to noise complexity stability coupling schemes fabrication techniques layout and wiring schemes signal analysis schemes readout schemes ? ? MMC specific : non-contact readout non-dissipative method

13 Informal Collaboration on MMCs for Astronomy S.R. Bandler T.R. Stevenson F.S. Porter E. Figueroa-Feliciano C.K. Stahle R. Kelley S. Romaine R. Bruni A. Fleischmann M. Linck T. Daniyarov H. Rotzinger A. Burg C. Enss Berlin SAO G.M. Seidel Y.H. Kim Y.H. Huang H. Eguchi K.D. Irwin B.L. Zink G.C. Hilton D.P. Pappas J.N. Ullom M.E. Huber, Uni. Colorado Heidelberg Goddard Boulder J. Beyer D. Drung T. Schurig H.-G. Meyer R. Stolz S. Zarisarenko Jena

14 SAO development of deposition techniques for Au:Er integrate Au:Er sensors on SQUID chips

15 NASA - GSFC development of suitable absorbers Bi:Cu develop means of fabricating MMC mushrooms investigating different transformer schemes development of position sensitive MMCs MMC

16 NIST Boulder development of integrated MMCs investigating new schemes for MMCs: self-inductance MMCs develop optimized SQUIDs explore new multiplexing techniques develop fabrication methods Optimized SQUID Co-evaporated Au:Er Sensor Film Self-Inductance Meander Transformer

17 PTB Berlin development of optimizied SQUIDs high speed low-noise readout electronics

18 IPTH Jena development of optimized SQUIDs low noise readout electronics optimized sensor design

19 Brown/Heidelberg investigate alternative sensor materials study fundamental noise develop new sensor geometries develop deposition techniques for Au:Er optimize single pixel performance study properties of small arrays

20 MMCs can be a new exciting tool for X-ray astronomy Let’s work to make it happen Summary SOHO 304 Å

21 Problem: Slewrate too low slew rate of SQUID too low (100  0 /ms) limits the usable signal size feedback of Ketchen-SQUID to weak