Michael Unrau, Institut für Kernphysik Analyse von Bolometersignalen der EDELWEISS Dark Matter Suche EDELWEISS dark matter searchFull InterDigitized detector.

Slides:



Advertisements
Similar presentations
Edelweiss-II : status and first results A new generation of background-free bolometers for WIMP search X-F. Navick - CEA Saclay, IRFU, France LTD13 – Stanford.
Advertisements

A walk through some statistic details of LSC results.
For the Collaboration GWDAW 2005 Status of inspiral search in C6 and C7 Virgo data Frédérique MARION.
INSTITUT MAX VON LAUE - PAUL LANGEVIN Fast Real-time SANS Detectors Charge Division in Individual, 1-D Position- sensitive Gas Detectors Patrick Van Esch.
EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
Readout System for the Edelweiss Dark Matter search
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Benjamin Schmidt, IEKP, KIT Campus North,
Direct search for Dark Matter with the EDELWEISS-II experiment: status and results Claudia Nones CSNSM-Orsay On behalf of the EDELWEISS-II collaboration.
Dark Matter Searches with Dual-Phase Noble Liquid Detectors Imperial HEP 1st Year Talks ‒ Evidence and Motivation ‒ Dual-phase Noble Liquid Detectors ‒
R. Lemrani CEA Saclay Search for Dark Matter with EDELWEISS Status and future NDM ’06 Paris, September 3-9, 2006.
Searching for Atmospheric Neutrino Oscillations at MINOS Andy Blake Cambridge University April 2004.
1 Edelweiss-II status Eric Armengaud (CEA), for the Edelweiss Collaboration Axion-WIMPs training workshop, Patras, 22/06/2007.
Compton Scattering Experiment John Klumpp And Ainsley Niemkiewicz.
Comments to the AGS pC polarimeter data processing t 0 based calibration Observations of Boris Morozov’s results Dead layer corrections. A novel method.
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
1 Low radioactivity issues in EDELWEISS-II Low Radioactivity Techniques, LRT 2010 Sudbury, August 2010 Pia Loaiza, Laboratoire Souterrain de Modane,
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
Data Processing Functions CSC508 Techniques in Signal/Data Processing.
EDELWEISS-II : Status and future
Status of DRIFT II Ed Daw representing the DRIFT collaboration: Univ. of Sheffield, Univ. of Edinburgh, Occidental College, Univ. of New Mexico Overview.
Design and performance of fast transient detectors Cathryn Trott, Nathan Clarke, J-P Macquart ICRAR Curtin University.
TAUP2007, Sendai, 12/09/2007 Vitaly Kudryavtsev 1 Limits on WIMP nuclear recoils from ZEPLIN-II data Vitaly A. Kudryavtsev Department of Physics and Astronomy.
Annual Modulation Study of Dark Matter Using CsI(Tl) Crystals In KIMS Experiment J.H. Choi (Seoul National University) SUSY2012, Beijing.
GEM MINIDRIFT DETECTOR WITH CHEVRON READOUT EIC Tracking Meeting 10/6/14 B.Azmoun, BNL.
1 Realistic top Quark Reconstruction for Vertex Detector Optimisation Talini Pinto Jayawardena (RAL) Kristian Harder (RAL) LCFI Collaboration Meeting 23/09/08.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University.
Iwha Womans University 2005/04/22 Hyunsu Lee & Jungwon Kwak Current Limit of WIMP search with CsI(Tl) crystal in KIMS 이현수 *, 곽정원, 김상열, 김선기, 김승천,
Reconstruction, efficiency, detector parameters, site selection… Work of Leslie Camilleri, Stan Wojcicki, Robert Hatcher, AP., +others.. Events simulation.
Analysis chain for MAGIC Telescope data Daniel Mazin and Nadia Tonello Max-Planck-Institut für Physik München D.Mazin, N.Tonello MPI for Physics, Munich.
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
Additive White Gaussian Noise
LIGO- G Z Analyzing Event Data Lee Samuel Finn Penn State University Reference: T030017, T
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
ZEPLIN I: First limits on nuclear recoil events Vitaly A. Kudryavtsev Department of Physics and Astronomy University of Sheffield, UK For the UK Dark Matter.
Basic Detector Measurements: Photon Transfer Curve, Read Noise, Dark Current, Intrapixel Capacitance, Nonlinearity, Reference Pixels MR – May 19, 2014.
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
EDELWEISS-II : Status and future Véronique SANGLARD CNRS/IN2P3/IPNLyon
Various Rupak Mahapatra (for Angela, Joel, Mike & Jeff) Timing Cuts.
A maximum likelihood analysis of the CoGeNT public dataset Chris Kelso University of Utah Astroparticle Physics 2014 June 25, 2014 Work in progress with:
1 Measurement of the Mass of the Top Quark in Dilepton Channels at DØ Jeff Temple University of Arizona for the DØ collaboration DPF 2006.
Ray Bunker (UCSB) – APS – April 17 th, 2005 CDMS SUF Run 21 Low-Mass WIMP Search Ray Bunker Jan 17 th -DOE UCSB Review.
ETC Block Diagram. Source Spectrum is derived from: Spectra Type –Stellar (50 stellar types) –Galaxies (elliptical, spiral) –QSO Luminosity Profile –point.
Comparison of filters for burst detection M.-A. Bizouard on behalf of the LAL-Orsay group GWDAW 7 th IIAS-Kyoto 2002/12/19.
Performance of Digital Communications System
Gusev K., JINR , Gerda meeting Spectrometric performance of Kurchatov Institute detectors.
The Surface Rejection with Position Information Gensheng Wang California Institute of Technology CDMS Collaboration Meeting, UCBS Feb. 11, 2005.
LIGO- G Z 11/13/2003LIGO Scientific Collaboration 1 BlockNormal Performance Studies John McNabb & Keith Thorne, for the Penn State University.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University 1W. Rau – IPA 2014.
Beam Diagnostics Seminar, Nov.05, 2009 Das Tune-Meßverfahren für das neue POSI am SIS-18 U. Rauch GSI - Strahldiagnose.
Application of a Charge Transfer Model to Space Telescope Data Paul Bristow Dec’03
ARENA08 Roma June 2008 Francesco Simeone (Francesco Simeone INFN Roma) Beam-forming and matched filter techniques.
Low Mass WIMP Search with the CDMS Low Ionization Threshold Experiment Wolfgang Rau Queen’s University Kingston.
R119 Analysis Overview Joel Sander for numerous people.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
A Search for Cold Dark Matter with Cryogenic Detectors at Frejus Underground Laboratory * EDELWEISS experiment 1.Experiment status and results for first.
ICARUS T600: low energy electrons
From Edelweiss I to Edelweiss II
SuperCDMS Energy-scale, Resolution, and Sensitivity
Daniel Mazin and Nadia Tonello Max-Planck-Institut für Physik München
A Bubble Chamber for Dark Matter Detection
Improved radio data analysis with LOPES Katrin Link, for the LOPES Collaboration #0404, ICRC 2011, Beijing.
EET 422 EMC & COMPLIANCE ENGINEERING
Pulser Tests at the A0PI Mark Palmer and Bob Meller Cornell University
WARP: fitting gamma signals
Presentation transcript:

Michael Unrau, Institut für Kernphysik Analyse von Bolometersignalen der EDELWEISS Dark Matter Suche EDELWEISS dark matter searchFull InterDigitized detector technologySignal amplitude estimation with trapezoidal and optimal filtering

2 Direct detection of WIMPs (weak interacting massive particles) Count rate: < evt/kg/day! WIMP Scatt. WIMP Recoil nucleus  E R ~10 keV Ways to go: low background powerful background discrimination background studies

3 EDELWEISS-II Infrastructure

4 Background rejection with EDELWEISS-I Detectors

5 EDELWEISS II 93.5 kgd (2008) Limitations: Surface events with incomplete charge collection

6 ID detectors: surface event rejection with interleaved electrodes InterDigitized electrodes (ID): Modify E-field with biases to be: horizontal near surface vertical in the bulk A and C signals as ‚collection‘ electrodes B and D signals as veto against surface events Cuts on veto and guard electrodes define the fiducial zone 50 % fid mass A: +4 V B: -1.5V C: -4 V D: +1.5V

7 ID detectors: surface event rejection with interleaved electrodes Modify E-field with biases to be: horizontal near surface vertical in the bulk A and C signals as ‚collection‘ electrodes B and D signals as veto against surface events Cuts on veto and guard electrodes define the fiducial zone 50 % fid mass A: +4 V B: -1.5V C: -4 V D: +1.5V 133 Ba calibration data: fiducial only evts (no signal observed on veto electrodes) 1.82 x 10 5 events with 20 < E < 200 keV 6 events (under invest.)  rejection factor of 3 x / 

8 FID800 (Full InterDigitized) detectors >80% fid mass

9 FID800 detector performance >80% fid mass Ge-FID800 (  ) No events in the nuclear recoil band! Ge-ID (  )

10 Bolometer signals raw ionisation trace with heat channel crosstalk after subtraction of pattern and baseline raw heat traceafter baseline subtraction

11 Trapezoidal Filter transforms exponentional pulse with known fall time into trapezoid rise time and flat top width are set by filter parameters second derivative has a characteristic pattern

12 Using trapezoidal filter peak amplitude is 15*RMS(noise sample) estimation of amplitude by calculating the mean of the flat top estimation of peak position by calculating the correlation of second derivative of the filter output with the characteristic pattern

13 Accuracy of trapezoidal filter

14 Time Domain Fitting Measured signal: AmplitudePulse start timeNoise Expected signal at input minimal at:

15 Optimal Filtering minimal at: Average noise power spectral density

16 Applying Optimal Filter

17 Applying Optimal Filter amplitude peak time

18 Conclusions & outlook trapezoidal filter: optimal filter:  robust  precise reconstruction of position  amplitude spreading o(5%) for large signals  not optimally filtering the noise  weighting the allowed frequencies depending on the noise  optimal discrimination signal-to-noise in frequency domain  depends on correct model of noise frequency spectrum  modified optimal filter used so far in Edelweiss-2  full optimal filter under investigation

19 Conclusions & outlook optimal filter:  weighting the allowed frequencies depending on the noise  optimal discrimination signal-to-noise in frequency domain  depends on correct model of noise frequency spectrum  modified optimal filter used so far in Edelweiss-2  full optimal filter under investigation Preliminary!

20 Conclusions & outlook

21 Conclusions Preliminary!