1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 7a, March 3, 2014, SAGE 3101 Interpreting weighted kNN, forms of clustering, decision trees and Bayesian inference
Contents 2
Weighted KNN require(kknn) data(iris) m <- dim(iris)[1] val <- sample(1:m, size = round(m/3), replace = FALSE, prob = rep(1/m, m)) iris.learn <- iris[-val,] # train iris.valid <- iris[val,]# test iris.kknn <- kknn(Species~., iris.learn, iris.valid, distance = 1, kernel = "triangular") # Possible choices are "rectangular" (which is standard unweighted knn), "triangular", "epanechnikov" (or beta(2,2)), "biweight" (or beta(3,3)), "triweight" (or beta(4,4)), "cos", "inv", "gaussian", "rank" and "optimal". 3
names(iris.kknn) fitted.valuesVector of predictions. CLMatrix of classes of the k nearest neighbors. WMatrix of weights of the k nearest neighbors. DMatrix of distances of the k nearest neighbors. CMatrix of indices of the k nearest neighbors. probMatrix of predicted class probabilities. responseType of response variable, one of continuous, nominal or ordinal. distanceParameter of Minkowski distance. callThe matched call. termsThe 'terms' object used. 4
Look at the output > head(iris.kknn$W) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] [2,] [3,] [4,] [5,] [6,]
Look at the output > head(iris.kknn$D) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] [2,] [3,] [4,] [5,] [6,]
Look at the output > head(iris.kknn$C) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] [2,] [3,] [4,] [5,] [6,] > head(iris.kknn$prob) setosa versicolor virginica [1,] [2,] [3,] [4,] [5,] [6,]
Look at the output > head(iris.kknn$fitted.values) [1] virginica setosa versicolor setosa virginica virginica Levels: setosa versicolor virginica 8
Contingency tables fitiris <- fitted(iris.kknn) table(iris.valid$Species, fitiris) fitiris setosa versicolor virginica setosa versicolor virginica # rectangular – no weight fitiris2 setosa versicolor virginica setosa versicolor virginica
The plot pcol <- as.character(as.numeric(iris.valid$Species)) pairs(iris.valid[1:4], pch = pcol, col = c("green3", "red”)[(iris.valid$Species != fit)+1]) 10
New dataset - ionosphere require(kknn) data(ionosphere) ionosphere.learn <- ionosphere[1:200,] ionosphere.valid <- ionosphere[-c(1:200),] fit.kknn <- kknn(class ~., ionosphere.learn, ionosphere.valid) table(ionosphere.valid$class, fit.kknn$fit) b g b 19 8 g
Vary the parameters - ionosphere > (fit.train1 <- train.kknn(class ~., ionosphere.learn, kmax = 15, kernel = c("triangular", "rectangular", "epanechnikov", "optimal"), distance = 1)) Call: train.kknn(formula = class ~., data = ionosphere.learn, kmax = 15, distance = 1, kernel = c("triangular", "rectangular", "epanechnikov", "optimal")) Type of response variable: nominal Minimal misclassification: 0.12 Best kernel: rectangular Best k: 2 > table(predict(fit.train1, ionosphere.valid), ionosphere.valid$class) b g b 25 4 g b g b 19 8 g 2 122
Alter distance - ionosphere > (fit.train2 <- train.kknn(class ~., ionosphere.learn, kmax = 15, kernel = c("triangular", "rectangular", "epanechnikov", "optimal"), distance = 2)) Type of response variable: nominal Minimal misclassification: 0.12 Best kernel: rectangular Best k: 2 > table(predict(fit.train2, ionosphere.valid), ionosphere.valid$class) b g b 20 5 g #1 b g b 25 4 g #0 b g b 19 8 g 2 122
(Weighted) kNN Advantages –Robust to noisy training data (especially if we use inverse square of weighted distance as the “distance”) –Effective if the training data is large Disadvantages –Need to determine value of parameter K (number of nearest neighbors) –Distance based learning is not clear which type of distance to use and which attribute to use to produce the best results. Shall we use all attributes or certain attributes only? 14
Additional factors Dimensionality – with too many dimensions the closest neighbors are too far away to be considered close Overfitting – does closeness mean right classification (e.g. noise or incorrect data, like wrong street address -> wrong lat/lon) – beware of k=1! Correlated features – double weighting Relative importance – including/ excluding features 15
More factors Sparseness – the standard distance measure (Jaccard) loses meaning due to no overlap Errors – unintentional and intentional Computational complexity Sensitivity to distance metrics – especially due to different scales (recall ages, versus impressions, versus clicks and especially binary values: gender, logged in/not) Does not account for changes over time Model updating as new data comes in 16
Lots of clustering options _Cluster_analysishttp://wiki.math.yorku.ca/index.php/R: _Cluster_analysis Clustergram - This graph is useful in exploratory analysis for non- hierarchical clustering algorithms like k-means and for hierarchical cluster algorithms when the number of observations is large enough to make dendrograms impractical. (remember our attempt at a dendogram for mapmeans?) 17
Cluster plotting source(" content/uploads/2012/01/source_https.r.txt") # source code from github require(RCurl) require(colorspace) source_https(" snippets/master/clustergram.r") data(iris) set.seed(250) par(cex.lab = 1.5, cex.main = 1.2) Data <- scale(iris[,-5]) # scaling 18
> head(iris) Sepal.Length Sepal.Width Petal.Length Petal.Width Species setosa setosa setosa setosa setosa setosa > head(Data) Sepal.Length Sepal.Width Petal.Length Petal.Width [1,] [2,] [3,] [4,] [5,] [6,]
20 Look at the location of the cluster points on the Y axis. See when they remain stable, when they start flying around, and what happens to them in higher number of clusters (do they re- group together) Observe the strands of the datapoints. Even if the clusters centers are not ordered, the lines for each item might (needs more research and thinking) tend to move together – hinting at the real number of clusters Run the plot multiple times to observe the stability of the cluster formation (and location)
clustergram(Data, k.range = 2:8, line.width = 0.004) # line.width - adjust according to Y-scale 21
Any good? set.seed(500) Data2 <- scale(iris[,-5]) par(cex.lab = 1.2, cex.main =.7) par(mfrow = c(3,2)) for(i in 1:6) clustergram(Data2, k.range = 2:8, line.width =.004, add.center.points = T) # why does this produce different plots? # what defaults are used (kmeans) # PCA?? Remember your linear algebra 22
23
How can you tell it is good? set.seed(250) Data <- rbind(cbind(rnorm(100,0, sd = 0.3),rnorm(100,0, sd = 0.3),rnorm(100,0, sd = 0.3)), cbind(rnorm(100,1, sd = 0.3),rnorm(100,1, sd = 0.3),rnorm(100,1, sd = 0.3)), cbind(rnorm(100,2, sd = 0.3),rnorm(100,2, sd = 0.3),rnorm(100,2, sd = 0.3))) clustergram(Data, k.range = 2:5, line.width =.004, add.center.points = T) 24
More complex… set.seed(250) Data <- rbind(cbind(rnorm(100,1, sd = 0.3),rnorm(100,0, sd = 0.3),rnorm(100,0, sd = 0.3),rnorm(100,0, sd = 0.3)), cbind(rnorm(100,0, sd = 0.3),rnorm(100,1, sd = 0.3),rnorm(100,0, sd = 0.3),rnorm(100,0, sd = 0.3)), cbind(rnorm(100,0, sd = 0.3),rnorm(100,1, sd = 0.3),rnorm(100,1, sd = 0.3),rnorm(100,0, sd = 0.3)), cbind(rnorm(100,0, sd = 0.3),rnorm(100,0, sd = 0.3),rnorm(100,0, sd = 0.3),rnorm(100,1, sd = 0.3))) clustergram(Data, k.range = 2:8, line.width =.004, add.center.points = T) 25
Exercise - swiss par(mfrow = c(2,3)) swiss.x <- scale(as.matrix(swiss[, -1])) set.seed(1); for(i in 1:6) clustergram(swiss.x, k.range = 2:6, line.width = 0.01) 26
27 clusplot
Hierarchical clustering 28 > dswiss <- dist(as.matrix(swiss)) > hs <- hclust(dswiss) > plot(hs)
ctree 29 require(party) swiss_ctree <- ctree(Fertility ~ Agriculture + Education + Catholic, data = swiss) plot(swiss_ctree)
30
pairs(iris[1:4], main = "Anderson's Iris Data -- 3 species”, pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)]) 31
splom extra! require(lattice) super.sym <- trellis.par.get("superpose.symbol") splom(~iris[1:4], groups = Species, data = iris, panel = panel.superpose, key = list(title = "Three Varieties of Iris", columns = 3, points = list(pch = super.sym$pch[1:3], col = super.sym$col[1:3]), text = list(c("Setosa", "Versicolor", "Virginica")))) splom(~iris[1:3]|Species, data = iris, layout=c(2,2), pscales = 0, varnames = c("Sepal\nLength", "Sepal\nWidth", "Petal\nLength"), page = function(...) { ltext(x = seq(.6,.8, length.out = 4), y = seq(.9,.6, length.out = 4), labels = c("Three", "Varieties", "of", "Iris"), cex = 2) }) 32
33 parallelplot(~iris[1:4] | Species, iris)
34 parallelplot(~iris[1:4], iris, groups = Species, horizontal.axis = FALSE, scales = list(x = list(rot = 90)))
hclust for iris 35
plot(iris_ctree) 36
Ctree > iris_ctree <- ctree(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, data=iris) > print(iris_ctree) Conditional inference tree with 4 terminal nodes Response: Species Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width Number of observations: 150 1) Petal.Length <= 1.9; criterion = 1, statistic = )* weights = 50 1) Petal.Length > 1.9 3) Petal.Width <= 1.7; criterion = 1, statistic = ) Petal.Length <= 4.8; criterion = 0.999, statistic = )* weights = 46 4) Petal.Length > 4.8 6)* weights = 8 3) Petal.Width > 1.7 7)* weights = 46 37
> plot(iris_ctree, type="simple”) 38
New dataset to work with trees fitK <- rpart(Kyphosis ~ Age + Number + Start, method="class", data=kyphosis) printcp(fitK) # display the results plotcp(fitK) # visualize cross-validation results summary(fitK) # detailed summary of splits # plot tree plot(fitK, uniform=TRUE, main="Classification Tree for Kyphosis") text(fitK, use.n=TRUE, all=TRUE, cex=.8) # create attractive postscript plot of tree post(fitK, file = “kyphosistree.ps", title = "Classification Tree for Kyphosis") # might need to convert to PDF (distill) 39
40
41 > pfitK<- prune(fitK, cp= fitK$cptable[which.min(fitK$cptable[,"xerror"]),"CP"]) > plot(pfitK, uniform=TRUE, main="Pruned Classification Tree for Kyphosis") > text(pfitK, use.n=TRUE, all=TRUE, cex=.8) > post(pfitK, file = “ptree.ps", title = "Pruned Classification Tree for Kyphosis”)
42 > fitK <- ctree(Kyphosis ~ Age + Number + Start, data=kyphosis) > plot(fitK, main="Conditional Inference Tree for Kyphosis”)
43 > plot(fitK, main="Conditional Inference Tree for Kyphosis",type="simple")
randomForest > require(randomForest) > fitKF <- randomForest(Kyphosis ~ Age + Number + Start, data=kyphosis) > print(fitKF) # view results Call: randomForest(formula = Kyphosis ~ Age + Number + Start, data = kyphosis) Type of random forest: classification Number of trees: 500 No. of variables tried at each split: 1 OOB estimate of error rate: 20.99% Confusion matrix: absent present class.error absent present > importance(fitKF) # importance of each predictor MeanDecreaseGini Age Number Start Random forests improve predictive accuracy by generating a large number of bootstrapped trees (based on random samples of variables), classifying a case using each tree in this new "forest", and deciding a final predicted outcome by combining the results across all of the trees (an average in regression, a majority vote in classification).
More on another dataset. # Regression Tree Example library(rpart) # build the tree fitM <- rpart(Mileage~Price + Country + Reliability + Type, method="anova", data=cu.summary) printcp(fitM) # display the results …. Root node error: /60 = n=60 (57 observations deleted due to missingness) CP nsplit rel error xerror xstd
Mileage… plotcp(fitM) # visualize cross-validation results summary(fitM) # detailed summary of splits 46
47 par(mfrow=c(1,2)) rsq.rpart(fitM) # visualize cross-validation results
# plot tree plot(fitM, uniform=TRUE, main="Regression Tree for Mileage ") text(fitM, use.n=TRUE, all=TRUE, cex=.8) # prune the tree pfitM<- prune(fitM, cp= ) # from cptable # plot the pruned tree plot(pfitM, uniform=TRUE, main="Pruned Regression Tree for Mileage") text(pfitM, use.n=TRUE, all=TRUE, cex=.8) post(pfitM, file = ”ptree2.ps", title = "Pruned Regression Tree for Mileage”) 48
49
# Conditional Inference Tree for Mileage fit2M <- ctree(Mileage~Price + Country + Reliability + Type, data=na.omit(cu.summary)) 50
Enough of trees! 51
Bayes > cl <- kmeans(iris[,1:4], 3) > table(cl$cluster, iris[,5]) setosa versicolor virginica # > m <- naiveBayes(iris[,1:4], iris[,5]) > table(predict(m, iris[,1:4]), iris[,5]) setosa versicolor virginica setosa versicolor virginica pairs(iris[1:4],main="Iris Data (red=setosa,green=versicolor,blue=virginica)", pch=21, bg=c("red","green3","blue")[u nclass(iris$Species)])
Digging into iris classifier<-naiveBayes(iris[,1:4], iris[,5]) table(predict(classifier, iris[,-5]), iris[,5], dnn=list('predicted','actual')) actual predicted setosa versicolor virginica setosa versicolor virginica
Digging into iris > classifier$apriori iris[, 5] setosa versicolor virginica > classifier$tables$Petal.Length Petal.Length iris[, 5] [,1] [,2] setosa versicolor virginica
Digging into iris plot(function(x) dnorm(x, 1.462, ), 0, 8, col="red", main="Petal length distribution for the 3 different species") curve(dnorm(x, 4.260, ), add=TRUE, col="blue") curve(dnorm(x, 5.552, ), add=TRUE, col = "green") 55
ench/html/HouseVotes84.html > require(mlbench) > data(HouseVotes84) > model <- naiveBayes(Class ~., data = HouseVotes84) > predict(model, HouseVotes84[1:10,-1]) [1] republican republican republican democrat democrat democrat republican republican republican [10] democrat Levels: democrat republican 56
House Votes 1984 > predict(model, HouseVotes84[1:10,-1], type = "raw") democrat republican [1,] e e-01 [2,] e e-01 [3,] e e-01 [4,] e e-03 [5,] e e-02 [6,] e e-01 [7,] e e-01 [8,] e e-01 [9,] e e-01 [10,] e e-11 57
House Votes 1984 > pred <- predict(model, HouseVotes84[,-1]) > table(pred, HouseVotes84$Class) pred democrat republican democrat republican
So now you could complete this: > data(HairEyeColor) > mosaicplot(HairEyeColor) > margin.table(HairEyeColor,3) Sex Male Female > margin.table(HairEyeColor,c(1,3)) Sex Hair Male Female Black Brown Red Blond Construct a naïve Bayes classifier and test. 59
Assignments to come… Term project (A6). Due ~ week % (25% written, 5% oral; individual). Assignment 7: Predictive and Prescriptive Analytics. Due ~ week 9/10. 20% (15% written and 5% oral; individual); 60
Coming weeks I will be out of town Friday March 21 and 28 On March 21 you will have a lab – attendance will be taken – to work on assignments (term (6) and assignment 7). Your project proposals (Assignment 5) are on March 18. On March 28 you will have a lecture on SVM, thus the Tuesday March 25 will be a lab. Back to regular schedule in April (except 18 th ) 61
Admin info (keep/ print this slide) Class: ITWS-4963/ITWS 6965 Hours: 12:00pm-1:50pm Tuesday/ Friday Location: SAGE 3101 Instructor: Peter Fox Instructor contact: (do not leave a Contact hours: Monday** 3:00-4:00pm (or by appt) Contact location: Winslow 2120 (sometimes Lally 207A announced by ) TA: Lakshmi Chenicheri Web site: –Schedule, lectures, syllabus, reading, assignments, etc. 62