1PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 Non-linear oscillations and synergy effects in non-inductive plasma regimes on Tore Supra.

Slides:



Advertisements
Similar presentations
Glenn Bateman Lehigh University Physics Department
Advertisements

Chalkidikhi Summer School Plasma turbulence in tokamaks: some basic facts… W.Fundamenski UKAEA/JET.
1 G.T. Hoang TORE SUPRA Association Euratom-Cea TTF, Madison, Apr 2003 G.T. Hoang, C. Bourdelle, B. Pégourié, J. F. Artaud, J.Bucalossi, F. Clairet, C.
1 15th May 2012 Association EURATOM-CEA Shaodong Song Observation of Strong Inward Heat Transport with Off-axis ECRH in Tore Supra Heat pinch experiments.
1 Association Euratom-CEA TORE SUPRA EAST, China 7 th Jan 2010 X.L. Zou Observation of Strong Inward Heat Transport In Tore Supra with Off-Axis ECRH S.D.
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
1 G.T. Hoang, 20th IAEA Fusion Energy Conference Euratom Turbulent Particle Transport in Tore Supra G.T. Hoang, J.F. Artaud, C. Bourdelle, X. Garbet and.
MHD Behaviour of Low-Aspect-Ratio RFP Plasmas in RELAX S.Masamune, T.Onchi, A.Sanpei, R.Ikezoe, K.Oki, T.Yamashita, H.Shimazu, N.Nishino 1), R.Paccagnella.
Euratom J. Jacquinot, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1/11/2004 Euratom Steady-State operation of Tokamaks: Key Physics and Technology.
S. Coda, 46 th APS-DPP meeting, Savannah, 19 Nov S. Coda, 34 th EPS Conf. on Plasma Physics, Warsaw, 5 July 2007 S. Coda, MHD workshop, PPPL, 22.
Steady State High  N Discharges and Real-Time Control of Current Profile in JT-60U T. Suzuki 1), A. Isayama 1), Y. Sakamoto 1), S. Ide 1), T. Fujita 1),
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Effect of non-Maxwellian Velocity Distributions of EC Heated Plasmas on Electron Temperature Measurements by Thomson Scattering Ge Zhuang 1,2 1. College.
Advanced Tokamak Plasmas and the Fusion Ignition Research Experiment Charles Kessel Princeton Plasma Physics Laboratory Spring APS, Philadelphia, 4/5/2003.
Study of transport simulation on RF heated and current driven EAST plasma Siye Ding Under instruction of Prof. Baonian Wan 12/09/2009.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
1 Association Euratom-Cea TORE SUPRA Tore Supra “Fast Particles” Experiments LH SOL Generated Fast Particles Meeting Association Euratom IPP.CR, Prague.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Microstability analysis of e-ITBs in high density FTU plasmas 1)Associazione EURATOM-ENEA sulla fusione, C.R. Frascati, C.P , Frascati, Italy.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Initial Exploration of HHFW Current Drive on NSTX J. Hosea, M. Bell, S. Bernabei, S. Kaye, B. LeBlanc, J. Menard, M. Ono C.K. Phillips, A. Rosenberg, J.R.
12/03/2013, Praga 1 Plasma MHD Activity Observations via Magnetics Diagnostics: Magnetic island Analysis Magnetic island Analysis Frederik Ostyn (UGent)
1 托卡马克位形优化 (2) 高庆弟 SWIP 核工业西南物理研究院 成都. 2 Nonlinearity of LH wave absorption  The plasma temperature in HL-2A is much lower than that in future reactor.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
Current Drive for FIRE AT-Mode T.K. Mau University of California, San Diego Workshop on Physics Issues for FIRE May 1-3, 2000 Princeton Plasma Physics.
G.Huysmansworkshop : Principles of MHD 21-24/3/2005 MHD in Tokamak Plasmas Guido Huysmans Association Euratom/CEA Cadarache, France with contributions.
RF simulation at ASIPP Bojiang DING Institute of Plasma Physics, Chinese Academy of Sciences Workshop on ITER Simulation, Beijing, May 15-19, 2006 ASIPP.
1 Instabilities in the Long Pulse Discharges on the HT-7 X.Gao and HT-7 Team Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei,
1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.
ASIPP Long pulse and high power LHCD plasmas on HT-7 Xu Qiang.
(National Institute for Fusion Science, Japan)
1Peter de Vries – ITBs and Rotational Shear – 18 February 2010 – Oxford Plasma Theory Group P.C. de Vries JET-EFDA Culham Science Centre Abingdon OX14.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
DIFFER is part ofand Modelling of ECCD applied for NTM stabilization E. Westerhof FOM Institute DIFFER Dutch Institute for Fundamental Energy Research.
THE BEHAVIOUR OF THE HEAT CONDUCTIVITY COEFFICIENT AND THE HEAT CONVECTIVE VELOCITY AFTER ECRH SWITCH-ON (-OFF) IN T-10 V. F. Andreev, Yu. N. Dnestrovskij,
JT-60U -1- Access to High  p (advanced inductive) and Reversed Shear (steady state) plasmas in JT-60U S. Ide for the JT-60 Team Japan Atomic Energy Agency.
RFX workshop / /Valentin Igochine Page 1 Control of MHD instabilities. Similarities and differences between tokamak and RFP V. Igochine, T. Bolzonella,
HL-2A Heating & Current Driving by LHW and ECW study on HL-2A Bai Xingyu, HL-2A heating team.
Work with TSC Yong Guo. Introduction Non-inductive current for NSTX TSC model for EAST Simulation for EAST experiment Voltage second consumption for different.
1 Stability Studies Plans (FY11) E. Fredrickson, For the NCSX Team NCSX Research Forum Dec. 7, 2006 NCSX.
1 Feature of Energy Transport in NSTX plasma Siye Ding under instruction of Stanley Kaye 05/04/09.
Association Euratom-Cea ITPA CDBM group meeting, St Petersburg, October CRONOS simulations of ITER AT scenarios F. Imbeaux, J.F. Artaud, V. Basiuk,
Heating and current drive requirements towards Steady State operation in ITER Francesca Poli C. Kessel, P. Bonoli, D. Batchelor, B. Harvey Work supported.
20th IAEA Fusion Energy Conference, 2004 Naka Fusion Research Establishment, Japan Atomic Energy Research Institute Stationary high confinement plasmas.
Association Euratom-CEA TORE SUPRA EAST, China 07/01/2010Xiaolan Zou1 Xiaolan ZOU CEA, IRFM, F Saint-Paul-Lez-Durance, France Heat and Particle Transport.
Advanced Tokamak Modeling for FIRE C. Kessel, PPPL NSO/PAC Meeting, University of Wisconsin, July 10-11, 2001.
Interplay between confinement, turbulence and magnetic topology Nils P. Basse MIT Plasma Science and Fusion Center This proposal originates from density.
T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 T. Hellsten 1, T. Bergkvist 1, T.Johnson 1, M. Laxåback 1 and L.-G. Eriksson 2 1 Euratom-VR.
Simulation of Non-Solenoidal Current Rampup in NSTX C. E. Kessel and NSTX Team Princeton Plasma Physics Laboratory APS-DPP Annual Meeting, Savannah, Georgia,
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
IAEA-TM 02/03/2005 1G. Falchetto DRFC, CEA-Cadarache Association EURATOM-CEA NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT.
Current Drive Experiments with Oscillating Toroidal Flux in HT-7 Superconducting Tokamak J.S.Mao, P. Phillips 1, J.R.Luo, J.Y.Zhao, Q.L.Wu, Z.W.Wu, J.G.Li,
Tuomas Tala 1/16 ITPA TC Meeting, Princeton, USA 5 October – 7 October 2009 T. Tala (JET, DIII-D), W. Solomon (DIII-D, JET, NSTX) and S. Kaye, L.F. Delgado-
HT-7 Proposal of the investigation on the m=1 mode oscillations in LHCD Plasmas on HT-7 Exp2005 ASIPP Youwen Sun, Baonian Wan and the MHD Team Institute.
Lower Hybrid Wave Coupling and Current Drive Experiments in HT-7 Tokamak Weici Shen Jiafang Shan Handong Xu Min Jiang HT-7 Team Institute of Plasma Physics,
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
Hard X-rays from Superthermal Electrons in the HSX Stellarator Preliminary Examination for Ali E. Abdou Student at the Department of Engineering Physics.
Long Pulse High Performance Plasma Scenario Development for NSTX C. Kessel and S. Kaye - providing TRANSP runs of specific discharges S.
Energetic ion excited long-lasting “sword” modes in tokamak plasmas with low magnetic shear Speaker:RuiBin Zhang Advisor:Xiaogang Wang School of Physics,
Profiles of density fluctuations in frequency range of (20-110)kHz Core density fluctuations Parallel flow measured by CHERS Core Density Fluctuations.
Decrease of transport coefficients in the plasma core after off-axis ECRH switch-off K.A.Razumova and T-10 team.
1 J. Garcia ITPA-IOS meeting Kyoto October 2011 Association Euratom-CEA Free boundary simulations of the ITER hybrid and steady-state scenarios J.Garcia.
9-12 Sept. 2002E. BARBAT0-ENEA, TTF, Cordoba1 Electron Internal Transport barriers by LHCD and ECRH in FTU-high density plasmas E. Barbato Associazione.
Reconnection Process in Sawtooth Crash in the Core of Tokamak Plasmas Hyeon K. Park Ulsan National Institute of Science and Technology, Ulsan, Korea National.
First Experiments Testing the Working Hypothesis in HSX:
Stabilization of m/n=1/1 fishbone by ECRH
20th IAEA Fusion Energy Conference,
Ioffe Summary Fast MHD oscillations observed on the TUMAN-3M in absence of energetic ions Bursts of the oscillations correlate with saw-tooth crashes and.
Presentation transcript:

1PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 Non-linear oscillations and synergy effects in non-inductive plasma regimes on Tore Supra G. Giruzzi Association Euratom-CEA sur la Fusion CEA/DSM/DRFC, CEA/Cadarache (FRANCE) Acknowledgements: J.F. Artaud, A. Bruschi, R. Dumont, G. Granucci, F. Imbeaux, J.L. Ségui,and the Tore Supra Team

2PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 Physics of discharges at E || ~ 0 Discharges at vanishing Ohmic field. Requirements: – a powerful non-inductive CD system – implementation of long-pulse technology on PFC – discharges much longer than the full resistive time Discharges at vanishing Ohmic field. Main properties: – particle transport: no Ware pinch (  Hoang et al., Phys. Rev. Lett. 90, (2003)) – absence of the strong Ohmic constraint on current profile  q profile is dominated by non-linearities in wave-plasma interaction, bootstrap current, heat transport, interplay with MHD....  control of non-inductive discharges

3PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 Summary of the talk Illustration of the physics at E || ~ 0 by two noticeable examples on Tore Supra experiments: – Non-linear T e oscillations: discovery of the O-regime (  Giruzzi et al., Phys. Rev. Lett. 91, (2003)) – ECCD experiments in LHCD plasmas: synergy effects

4PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 Non-linear temperature oscillations: the O-regime

5PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 What is the O-regime ? (ECE)

6PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 These oscillations are not MHD Magnetic axis low frequency (~ 10 Hz) no helical structure (m=0, n=0, from soft X-ray tomography) no correlation with MHD signals (Mirnov coils) TeTe

7PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 The best shots are in the O-regime Injected energy record shot: 0.75 GJ 4 min. 25 s

8PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 nl (10 19 m -2 ) P LH (MW) T e (  = ) (keV) Oscillations during LH ramp-up

9PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 nl (10 19 m -2 ) P LH (MW) T e (  = 0) (keV) nl (10 19 m -2 ) T e (  = 0) (keV) … or during density ramp-up

10PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 nl (10 19 m -3 ) P LH (MW) T e (  = 0) (keV) V loop (V) An "anomalous" case (V loop  0) V loop ~ 175 mV n || = 1.5

11PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 n || ≈ 1.8 no ECRH Oscillations amplitude vs frequency

12PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003  T e peaked = 62.2 mV  T e hollow = 9.3 mV Oscillations amplitude vs V loop n || = 1.5 ICRH

13PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 V loop (V) P EC (MW) P LH (MW) V loop ≠ 0 Transition to O-regime by co-ECCD T e (  = ) (keV) V loop (V) P EC (MW) P LH (MW) T e (  = ) (keV) V loop = 0

14PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/ or by counter-ECCD at  = 0.2 nl (10 19 m -2 ) P LH (MW) T e (  = 0) (keV) ECRH phase T e (  = 0) (keV) P EC = 0.4 MW

15PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 A short ECCD trigger is sufficient T e (keV) ECE ECCD P LH (MW)

16PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 q(r) T e (r) T e0 (keV) EC phase Current diffusion analysis (CRONOS) link with the q profile (shear and/or rational surface) link with confinement oscillations  regime of intermediate confinement

17PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 – appearance after a long time (  E || diffusion) – appearance during transient phases (LH or density ramp-up) – link with V loop level and n || of LH waves – link with the hard X-ray profile width T e (0) (keV) Hard X-ray profile T e oscillations are linked with j(r) –link with q profile and confinement: the O-regime is an incomplete transition to improved confinement

18PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 Lotka-Volterra equations Used for modelling populations in ecosystems 2 coupled nonlinear equations, periodic solutions J = predator; T = prey ? Predator-prey systems

19PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 When current chases temperature Resistive diffusion and heat transport equations:... have similarities with the Lotka-Volterra equations:

20PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 Oscillations reproduced by CRONOS coupled resistive and heat diffusion equations have periodic solutions if: j LH (r)  j(r)T e (r)  e is a function of j (e.g., improved confinement for negative shear) Outputs of the CRONOS code resistive diffusion heat transport self-cons. equilibrium j LH (r)  j(r)T e (r)

21PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 Profiles during an oscillation q(  ) Te()Te() s(  )

22PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA 6/10/2003 Conclusions on O-regime A new tokamak plasma regime Predator-prey system with a distinctive feature: non-linearity in a diffusive term Challenging application for the CRONOS code Can this be useful ? (e.g.: periodic q profile movements could prevent MHD)

23PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 Combined Electron Cyclotron and Lower Hybrid Current Drive Experiments on Tore Supra: the Synergy Effect

24PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 Why to combine LH and EC waves ? LH waves: best CD efficiency limited control capability (multi-junction launcher) EC waves: much lower CD efficiency (waiting for reactor T e ) good control capability (localized absorption) Combination of the two suggested since the early '80s I. Fidone et al., Phys. Fluids 27 (1984) 2468 Successful current ramp-up experiments with LH+EC WT-2:A. Ando et al., Phys. Rev. Lett. 56 (1986) 2180 JFT-2M: T. Yamamoto et al., Phys. Rev. Lett. 58 (1987) 2220 WT-3: T. Maekawa et al., Phys. Rev. Lett. 70 (1993) 2561 Kinetic calculations point out a possible synergy I. Fidone et al., Nuclear Fusion 27 (1987) 579

25PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 What is the synergy ? A definition: I LH+EC > I LH + I EC Simple physical picture: 1)EC waves heat electrons at the lower end of the LH tail (~ 3v th ) 2)LH waves push them to high parallel energies 3)As a result, v || >> 3v th  CD efficiency improved LH controls the efficiency EC controls the j profile parallel distribution

26PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 Attempts to demonstrate synergy WT-3 and JFT-2M ramp-up experiments: effect of E || and hot conductivity transient regimes fast electron confinement issue  synergy cannot be assessed or quantified Steady CD experiments: Versator- II (J. Colborn et al., Nucl. Fusion 38 (1998) 783) TdeV (Côté et al., 25th EPS Conf. 22C (1998) 1336)  inconclusive or negative results

27PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 Exploiting long shots on TS T e (0) (keV) transformer flux (Wb) P LH (MW) n l (10 19 m -2 ) I p (MA) LHCD plasma target: V loop = 0 (transf. flux kept constant) I p kept constant (feedback by LH power) density kept constant (feedback by gas puff)

28PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 P LH decreases during ECCD phase T e (0) (keV) P LH (MW) n l (10 19 m -2 ) T e (  =0.1) (keV) T e (  =0.25) (keV) ECCD phase P EC = 0.7 MW (two gyrotrons), toroidal angle +24° LH and EC waves absorbed at same location 2 improvements: core confinement ECCD efficiency

29PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 Core confinement improved after ECCD before ECCD  e (m 2 /s) before ECCD after ECCD q(  ) before ECCD after ECCD

30PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 P LH =0.5 MW replaced by P EC =0.7 MW P LH (MW) transformer flux (Wb) line-int. density (10 19 m -2 ) plasma current (MA) ECCD phase  P LH ≈ 0.5 MW

31PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 Proof of synergy effect  I = (I p -I bs )  P LH / P LH  P LH = 0.5 MW   I ≈ 80 kA predicted I EC = 22 kA. Enhancement of LHCD efficiency  LH. Possible effects:  LH increases with I p. Here, I p constant  LH increases with. Here, in the EC phase increases by 5 % only with respect to the phase after EC enhancement of I bs. NEOCLASS computations yield negligible difference LH+EC phase LH phase, post-EC

32PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 Variations of EC power deposition Variations of: toroidal angles poloidal angles Result in variations of:  EC = r EC /a (EC power deposition location) (T e averaged over EC power deposition) P LH (W/cm 3 )

33PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003  I well beyond computed I EC linear current (computed) synergy current (measured)  tor = +28°,+25°  tor = +24°,+24°

34PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 ECCD theory is reliable ECCD theory in excellent agreement with DIII-D experiments (Petty et al., Nucl. Fus. 42 (2002) 1366)

35PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 Synergy factor: F syn =  I/I EC Comparison with kinetic theory (3-D Fokker-Planck code  G. Giruzzi, PPCF 35 (1993) A123 )

36PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 D LH +D EC in the u || -u  plane Overlap of the two interactions in both real and momentum space is a necessary condition for synergy F syn ~ 4F syn ~ 1

37PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 EC absorbed power in u || -u  space with LH F syn ≈ 1 F syn ≈ 4 without LH

38PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 Conclusions on LH+EC experiments LH power replaced by EC power of the same order: an experimental fact Improvement of CD efficiency difficult to explain by other effects than synergy Kinetic calculations of the synergy factor in excellent agreement with experiments Dependence of the synergy factor on physical parameters still to be explored and understood

39PPPL G. Giruzzi Association Euratom-Cea TORE SUPRA Association Euratom-Cea TORE SUPRA 6/10/2003 Prospects Characterization of the O - regime  dedicated experimental studies  mathematical properties  use properties of the O-regime to constrain transport models Control of LHCD discharges at V loop = 0 by ECCD  experimental study of system non-linearities  feedback control of q and T e Establishment and control of electron ITB regimes