Organization for Micro-Electronics desiGn and Applications HARDROC 3 for SDHCAL OMEGA microelectronics group Ecole Polytechnique CNRS/IN2P3, Palaiseau.

Slides:



Advertisements
Similar presentations
Jeudi 19 février 2009 Status of SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin-Chassard, Christophe de La.
Advertisements

SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
L.Royer– TWEPP – 22 Sept Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand Signal processing for High Granularity Calorimeter: Amplification,
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
08/10/2007Julie Prast, LAPP, Annecy1 The DHCAL DIF and the DIF Task Force Julie Prast, LAPP, Annecy.
EUDET FEE status C. de LA TAILLE. EUDET annual meeting 6 oct 08 cdlt : FEE statrus 2 EUDET module FEE : main issues 2 nd generation ASICs –Self triggering.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay on behalf of the CALICE and EUDET collaborations
ASIC development foreseen at IHEP/ORSAY C. de La Taille.
An update on Power Pulsing with SDHCAL Kieffer Robert IPN Lyon « CALICE collaboration meeting » May 2011, CERN
SPIROC : second generation of Silicon PM Readout ASIC Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Jean-Jacques Jaeger, Gisèle Martin-
EUDET JRA3 Front-End electronics in 2007 C. de La Taille IN2P3/LAL Orsay HaRDROCSKIROCSPIROC.
Vendredi 18 décembre 2015 Status report on SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin- Chassard, Christophe.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
ILD/ECAL MEETING 2014, 東京大学, JAPAN
Second generation Front-End ASICs for CALICE LCWS07 Hamburg C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration HaRDROCSKIROCSPIROC.
European DHCAL development European DHCAL development CIEMAT,IPNL,LAL, LAPP,LLR, PROTVINO, SACLAY CIEMAT,IPNL,LAL, LAPP,LLR, PROTVINO, SACLAY Status :
Organization for Micro-Electronics desiGn and Applications Ludovic Raux OMEGA microelectronics group Ecole Polytechnique & CNRS IN2P3
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
HARDROC2: First measurements. HR2 status, Hambourg 12 dec 08, NSM 2 HARDROC2 4.3mm 4.5 mm Ceramic: 4.3 mm Plastic (Thin QFP): 1.4 mm 28 mm Hardroc2 submission:
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
14 jan 2010 CALICE/EUDET FEE status C. de LA TAILLE.
An update on Power Pulsing with SDHCAL Kieffer Robert IPN Lyon « CALICE collaboration meeting » May 2011, CERN
HARDROC: Readout Chip for CALICE/EUDET Digital Hadronic calorimeter Nathalie Seguin-Moreau.
HaRDROC performance IN2P3/LAL+IPNL+LLR R. GAGLIONE, I. LAKTINEH, H. MATHEZ IN2P3/IPNL LYON M. BOUCHEL, J. FLEURY, C. de LA TAILLE, G. MARTIN-CHASSARD,
12/09/2007Julie Prast, LAPP, Annecy1 The DIF Task Force and a focus on the DHCAL DIF Remi Cornat, Bart Hommels, Mathias Reinecke, Julie Prast.
SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip Stéphane CALLIER, Christophe DE LA TAILLE, Frédéric DULUCQ, Gisèle MARTIN-CHASSARD, Nathalie SEGUIN-MOREAU.
CSNSM 14-16/09/2011 Frédéric DULUCQ Digital part of SPIROC 3.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
SPIROC : Silicon PM Readout ASIC Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin-Chassard, Christophe de La Taille, Ludovic Raux IN2P3/OMEGA-LAL.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
June 13rd, 2008 HARDROC2. June 13rd, 2008 European DHCAL meeting, NSM 2 HaRDROC1 architecture Variable gain (6bits) current preamps (50ohm input) One.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
CALICE/EUDET FEE status C. de LA TAILLE. 31 aug 2009 EUDET SC meeting Status of JRA3 Front End Electronics 2 ILC front-end ASICs : the ROC chips SPIROC.
SKIROC2–CMS for the CMS HGCAL
11 may 2010 Performance of 2 nd generation ASICs for CALICE/EUDET C. de LA TAILLE OMEGA-LAL Orsay.
CALICE/EUDET FEE status C. de LA TAILLE. 16 jun 2009 TB meeting FNAL ASICs for CALICE/EUDET 2 First generation ASICs Readout of physics prototypes (ECAL,
CALICE/EUDET developments in electronics C. de La Taille IN2P3/LAL Orsay.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Organization for Micro-Electronics desiGn and Applications Last results on HARDROC 3 OMEGA microelectronics group Ecole Polytechnique CNRS/IN2P3, Palaiseau.
SOCLE Meeting Dec Roman Pöschl LAL Orsay On behalf of the groups performing Electronics R&D - Introduction - SKIROC2 – Handling the large Dynamic.
Understanding of SKIROC performance T. Frisson (LAL) On behalf of the SiW ECAL team Special thanks to the electronic and DAQ experts: Stéphane Callier,
HARDROC2: Before production in2p3
HARDROC HAdronic Rpc ReadOut Chip
STATUS OF SPIROC measurement
A 12-bit low-power ADC for SKIROC
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
SPIROC Status : Last release, “SPIROC 2c”
HR3 status.
Status of ROC chips C. De La Taille for the OMEGA group
R&D activity dedicated to the VFE of the Si-W Ecal
SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip
Front-End electronics for CALICE Calorimeter review Hamburg
Felix Sefkow CALICE/EUDET electronics meeting CERN, July 12, 2007
02 / 02 / HGCAL - Calice Workshop
STATUS OF SKIROC and ECAL FE PCB
SPIROC Status : Last developments for SPIROC
ECAL Electronics Status
HARDROC STATUS 6-Dec-18.
SKIROC status Calice meeting – Kobe – 10/05/2007.
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
PRODUCTION RUN: ROC chips STATUS
HARDROC STATUS 17 mar 2008.
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Signal processing for High Granularity Calorimeter
AIDA KICK OFF MEETING WP9
Presentation transcript:

Organization for Micro-Electronics desiGn and Applications HARDROC 3 for SDHCAL OMEGA microelectronics group Ecole Polytechnique CNRS/IN2P3, Palaiseau (France) 02 / 02 / HGC4ILD Workshop

2 ROC chips for ILC prototypes  ROC chips for technological prototypes: to study the feasibility of large scale, industrializable modules (Eudet/Aida funded)  Requirements for electronics  Large dynamic range (15 bits)  Auto-trigger on ½ MIP  On chip zero suppress  10 8 channels  Front-end embedded in detector  Ultra-low power : 25µW/ch SPIROC2 Analog HCAL (AHCAL) (SiPM) 36 ch. 32mm² June 07, June 08, March 10, Sept 11 HARDROC2 and MICROROC Semi Digital HCAL (sDHCAL) (RPC, µmegas or GEMs) 64 ch. 16mm² Sept 06, June 08, March 10 SKIROC2 ECAL (Si PIN diode) 64 ch. 70mm² March 10 SKIROC2 ECAL (Si PIN diode) 64 ch. 70mm² March 10

From 2 nd generation… 3  2 nd generation chips for ILD  Auto-trigger, analog storage and/or digitization  Token-ring readout (one data line activated by each chip sequentially)  Common DAQ  Power pulsing : <1 % duty cycle

 3 rd generation chips for ILD  Independent channels (zero suppress)  I2C link for Slow Control parameters and triple voting - configuration broadcasting - geographical addressing  HARDROC3: 1 st of the 3 rd generation chip to be submitted – Received in June 2013 (SiGe 0.35µm) (AIDA funded) – Die size ~30 mm 2 (6.3 x 4.7 mm 2 ) - Packaged in a QFP208 …To 3 rd generation 4 RPC cross section 1m 2 RPC [IPNL]

HR3: Simplified schematics 5  64 channels with current preamplifiers  Trigger less mode (auto trigger 15fC up to 10pC)  Gain correction (max factor 2)  3 shapers + 3 discriminators (encoded in 2 bits for readout)  I2C link for Slow Control  Independent channels with zero suppress  Max 8 events / channel with 12-b time stamping  Integrated clock generator: PLL  Power pulsing mode

Analog Part: FSB Linearity FSB0 FSB0: 5  noise limit= 15 fC FSB1FSB2 Up to 10 pCUp to 50 pC 6 Fast shaper outputs (mV) vs Qinj (fC) 50% trigger efficiency (DAC units) vs Qinj (fC) Dynamic range: 15fC - 50 pC

Gain correction / Scurves 7 HR3: extracted 50% Scurves point vs Channel number Before: ± 17 DACU After: ± 8 DACU (± 6 fC) 50% point ± 25fC Qinj=100fC 50% point ± 5fC HR2 gain correction

8 New Slow Control: I2C I2C standard protocol access (max 127 chip / line) Possibility to broadcast a default configuration to all the chips Read and write access to a specific chip with its geographical address Triple voting for each parameter (redundancy) Read back of control bit (even if the chip is running / copy) Write frame: Read frame: SAAAP Slave address Reg addressdataW SRAAP Slave address data SAAP Slave address Reg addressW Clock Data Master Slave 1 Slave 2 Slave 3 Slave x

9 - I2C Write acces : Chip number (ID): 0xE2 / 0x73 / WrData: 0x83 I2C measurements - I2C Read acces : Chip number (ID): 0xE2 / 0x73

10 PLL measurements 5MHz  40 MHz  2 clocks are needed to start the chip  Slow Clock (1-10 MHz) related to the beam train (for Time stamping and data readout)  Fast clock (40-50MHz) for internal the state machines  A PLL (clock multiplier) has been designed to generate the fast clock  Multiplication factor is (N+1) / N is a SC parameter (1 to 31)  Full chain tested using PLL T lock = 260 µs PowerOnD Out_PLL

Zero suppress: Memory mapping Chip ID is the first to be outputted during readout (MSB first) MSB of each word indicates type of data: –“1”: general data (Hit ch number and number of events) –“0”: BCID + encoded data A parity bit/word Up to 9232 bits (577x16) during readout Example of number of bits during readout: 11

Zero suppress: Tests Zero suppress (only hit channels are readout): test OK Roll mode SC : test OK –If RollMode = “0”  Backward compatibility with 2Gen ROC chips behavior Only the N first events are stored –If RollMode = “1”  3Gen ROC chips behaviour Use the circular memory mode Only the N last events are stored “Noisy Evt” SC: 64 triggers => Noisy event => no data stored : test OK “ARCID” SC (Always Read Chip ID): test OK –If ARCID = 0  Backward compatibility: No event  No readout –If ARCID= 1  New behavior:No event  Read CHIP ID Signal injected ch 20 and ch 43 12

13 Power pulsing in HR chips Power supply HR3 with LVDS (5M + 40M) µW / channel HR2 with LVDS (5M + 40M) µW / channel PowerOnA (Analog) Only PowerOnDAC5550 Only PowerOn D72550 Power-On-All ,5% duty cycle 12,27,5 Compared to HR2, HR3 power consumption is higher due to: –The extended dynamic range (from 15pC to 50pC) –The integration of the zero suppress algorithm If the PLL is used, the power consumption is increased by 3% (due to the PLL VCO) DAC output (Vth) Trigger 25 µs PWR ON HR2  Power pulsing:  Bandgap + ref Voltages + master I: switched ON/OFF  Shut down bias currents with vdd always ON

14 Power pulsing: Testbeam HR2 – SDHCAL technological proto with up to 50 layers (7200 HR2 chips) built in – Scalable readout scheme successfully tested – Complete system in TB with channels, AUTOTRIGGER mode and power pulsing (5%) 1 m 3 RPC detector, 40 layers channels 1 m 3 RPC detector, 40 layers Lyon Vth0 Vth1 Vth2 1m 2 RPC [IPNL] – 144 ASICS

 Good analog performances  Dynamic range extended up to 50 pC  Circuit is able to work with only 1 external clock (thanks to PLL)  New I2C tested successfully  New digital features validated on testboard  Zero suppress, roll mode, ARCID mode and Noisy event mode  External trigger available to be able to check the status of each channel  Next steps  Production run (HR others chips) will be submitted mid-February 2015  2-3m long RPC chambers to be built and equipped with HR3 in 2015  Moving SPIROC / SKIROC to 3 rd generation  Much more complicated due to internal ADC / TDC / SCA management  Integration and tests of HR3 on the 2-3m long RPC will be very helpful Summary and next steps 15