M. Lautenschlager (M&D) / 11.02.03 / 1 ENES: The European Earth System GRID ENES – Alcatel WS 11.+12.02.03, ANTWERPEN Michael Lautenschlager Model and.

Slides:



Advertisements
Similar presentations
OptorSim: A Replica Optimisation Simulator for the EU DataGrid W. H. Bell, D. G. Cameron, R. Carvajal, A. P. Millar, C.Nicholson, K. Stockinger, F. Zini.
Advertisements

Welcome to Middleware Joseph Amrithraj
Preservation and Long Term Access of Data at the World Data Centre for Climate Frank Toussaint N.P. Drakenberg, H. Höck, M. Lautenschlager, H. Luthardt,
1 CEOS/WGISS20 – Kyiv – September 13, 2005 Paul Kopp SIPAD New Generation: Dominique Heulet CNES 18, Avenue E.Belin Toulouse Cedex 9 France
Novell Server Linux vs. windows server 2008 By: Gabe Miller.
23/04/2008VLVnT08, Toulon, FR, April 2008, M. Stavrianakou, NESTOR-NOA 1 First thoughts for KM3Net on-shore data storage and distribution Facilities VLV.
M.Lautenschlager (WDCC/MPI-M) / / 1 The CEOP Model Data Archive at the World Data Center for Climate as part of the CEOP Data Network CEOP / IGWCO.
Copyright © 2005 Department of Computer Science CPSC 641 Winter WAN Traffic Measurements There have been several studies of wide area network traffic.
Office of Science U.S. Department of Energy Grids and Portals at NERSC Presented by Steve Chan.
European Network for Earth System Modeling (ENES) The PRISM Project Guy P. Brasseur Max Planck Institute for Meteorology Hamburg, Germany.
M.Lautenschlager (WDCC / MPI-M) / / 1 WS Spatiotemporal Databases for Geosciences, Biomedical sciences and Physical sciences Edinburgh, November.
Preservation and Long Term Access of Data at the World Data Centre for Climate Frank Toussaint N.P. Drakenberg, H. Höck, S. Kindermann, M. Lautenschlager,
M.Lautenschlager (WDCC / MPI-M) / / 1 GO-ESSP at LLNL Livermore, June 19th – 21st, 2006 World Data Center Climate: Status and Portal Integration.
CT NIKHEF June File server CT system support.
Mass RHIC Computing Facility Razvan Popescu - Brookhaven National Laboratory.
EU 2nd Year Review – Jan – WP9 WP9 Earth Observation Applications Demonstration Pedro Goncalves :
M. Lautenschlager (M&D/MPIM)1 The CERA Database Michael Lautenschlager Modelle und Daten Max-Planck-Institut für Meteorologie Workshop "Definition.
Intranet and internet based software components. 2 Overview  What are intranet and internet based map applications?  System Requirements  Architecture.
EGU 2011 TIGGE, TIGGE LAM and the GIFS T. Paccagnella (1), D. Richardson (2), D. Schuster(3), R. Swinbank (4), Z. Toth (3), S.
IS-ENES [ees-enes] InfraStructure for the European Network for Earth System Modelling IS-ENES will develop a virtual Earth System Modelling Resource Centre.
Your First Azure Application Michael Stiefel Reliable Software, Inc.
Global Land Cover Facility The Global Land Cover Facility (GLCF) is a member of the Earth Science Information Partnership (ESIP) Federation providing data,
F. Toussaint (WDCC, Hamburg) / / 1 CERA : Data Structure and User Interface Frank Toussaint Michael Lautenschlager World Data Center for Climate.
Scientific Investigations; Support from Research Data Archives for Joint Office for Science Support 26 February, 2002 Steven Worley SCD/DSS.
Michael Lautenschlager World Data Center Climate Model and Data / Max-Planck-Institute for Meteorology German Climate Computing Centre (DKRZ)
9-Sept-2003CAS2003, Annecy, France, WFS1 Distributed Data Management at DKRZ Distributed Data Management at DKRZ Wolfgang Sell Hartmut Fichtel Deutsches.
M.Lautenschlager (WDCC, Hamburg) / / 1 Semantic Data Management for Organising Terabyte Data Archives Michael Lautenschlager World Data Center.
M.Lautenschlager (WDCC, Hamburg) / / 1 Semantic Data Management for Organising Terabyte Data Archives Michael Lautenschlager World Data Center.
기후모델 : 기후변화연구의 인프라 Climate Model: Infrastructure for Climate Change Research Wonsun Park Leibniz Institute of Marine Sciences Kiel, Germany KOFST Ultra.
GStore: GSI Mass Storage ITEE-Palaver GSI Horst Göringer, Matthias Feyerabend, Sergei Sedykh
TOPAZ operations, products, ongoing developments Laurent Bertino, Knut Arild Lisæter, Goran Zangana, NERSC OPNet meeting, Geilo, 6 th Nov
HPC system for Meteorological research at HUS Meeting the challenges Nguyen Trung Kien Hanoi University of Science Melbourne, December 11 th, 2012 High.
M.Lautenschlager (WDCC, Hamburg) / / 1 Training-Workshop Facilities and Sevices for Earth System Modelling Integrated Model and Data Infrastructure.
M.Lautenschlager (WDCC, Hamburg) / / 1 ICSU World Data Center For Climate Semantic Data Management for Organising Terabyte Data Archives Michael.
THORPEX Interactive Grand Global Ensemble (TIGGE) China Meteorological Administration TIGGE-WG meeting, Boulder, June Progress on TIGGE Archive Center.
The New Zealand Institute for Plant & Food Research Limited Use of Cloud computing in impact assessment of climate change Kwang Soo Kim and Doug MacKenzie.
ARGONNE NATIONAL LABORATORY Climate Modeling on the Jazz Linux Cluster at ANL John Taylor Mathematics and Computer Science & Environmental Research Divisions.
The CERA2 Data Base Data input – Data output Hans Luthardt Model & Data/MPI-M, Hamburg Services and Facilities of DKRZ and Model & Data Hamburg,
1 PRogramme for Integrated earth System Modelling (PRISM) An Infrastructure Project for Climate Research in Europe.
NQuery: A Network-enabled Data-based Query Tool for Multi-disciplinary Earth-science Datasets John R. Osborne.
Research Infrastructures Information Day Brussels, March 25, 2003 Victor Alessandrini IDRIS - CNRS.
Michael Lautenschlager, Hannes Thiemann, Frank Toussaint WDC Climate / Max-Planck-Institute for Meteorology, Hamburg Joachim Biercamp, Ulf Garternicht,
IPCC TGICA and IPCC DDC for AR5 Data GO-ESSP Meeting, Seattle, Michael Lautenschlager World Data Center Climate Model and Data / Max-Planck-Institute.
PSI Meta Data meeting, Toulouse - 15 November The CERA C limate and E nvironment data R etrieval and A rchiving system at MPI-Met / M&D S. Legutke,
PC clusters in KEK A.Manabe KEK(Japan). 22 May '01LSCC WS '012 PC clusters in KEK s Belle (in KEKB) PC clusters s Neutron Shielding Simulation cluster.
H. Widmann (M&D) Data Discovery and Processing within C3Grid GO-ESSP/LLNL / June, 19 th 2006 / 1 Data Discovery and Basic Processing within the German.
Lautenschlager + Thiemann (M&D/MPI-M) / / 1 Introduction Course 2006 Services and Facilities of DKRZ and M&D Integrating Model and Data Infrastructure.
Welcome to the PRECIS training workshop
Super Computing 2000 DOE SCIENCE ON THE GRID Storage Resource Management For the Earth Science Grid Scientific Data Management Research Group NERSC, LBNL.
The Modeling Circle Courtesy M. Lautenschlager, DKRZ.
IPCC WG II + III Requirements for AR5 Data Management GO-ESSP Meeting, Paris, Michael Lautenschlager, Hans Luthardt World Data Center Climate.
1 A Scalable Distributed Data Management System for ATLAS David Cameron CERN CHEP 2006 Mumbai, India.
M. Lautenschlager (M&D/MPIM)1 WDC on Climate as Part of the CERA 1 Database System Michael Lautenschlager Modelle und Daten Max-Planck-Institut.
Red Hat Enterprise Linux Presenter name Title, Red Hat Date.
DataGrid France 12 Feb – WP9 – n° 1 WP9 Earth Observation Applications.
2005 – 06 – - ESSP1 WDC Climate : Web Access to Metadata and Data Frank Toussaint World Data Center for Climate (M&D/MPI-Met, Hamburg)
INFSO-RI Enabling Grids for E-sciencE ESR Database Access K. Ronneberger,DKRZ, Germany H. Schwichtenberg, SCAI, Germany S. Kindermann,
Deep Serucity 7.0 Training
WP 9.4 Use Case (ESA-ESRIN, IPSL, KNMI)
Lab A: Installing and Configuring the Network Load Balancing Driver
Network Requirements Javier Orellana
TIGGE Data Archive and Access System at NCAR
Climate Data Analytics in a Big Data world
Miss rate versus (period, slice)
TeraScale Supernova Initiative
Internet Protocols IP: Internet Protocol
Carey Williamson Department of Computer Science University of Calgary
- Measurement of traffic volume -
Presentation transcript:

M. Lautenschlager (M&D) / / 1 ENES: The European Earth System GRID ENES – Alcatel WS , ANTWERPEN Michael Lautenschlager Model and Data Max-Planck Institute for Meteorology Hamburg Mail: / Web:

M. Lautenschlager (M&D) / / 2 ENES GRID Successful modelling and prediction of the Earth System relies heavily on the availability of huge data sets for boundary and initial conditions from observations and other model studies, and on comparison with the output of other model studies. Networking Aspects: NRN cooperation, bandwidth, latency, quality of service, middleware integration Software Aspects: science supporting data processing and visualisation, data and metadata standards, authorising systems Data Archives: standardisation of data models, primary data and meta data organization, long-term storage, data quality, data access Organizational Aspects: load balancing, job scheduling, trans- national access, rights management, cost management

M. Lautenschlager (M&D) / / 3 Model Computing GRID (PRISM) + distributed computing

M. Lautenschlager (M&D) / / 4 Data Processing GRID + processing

M. Lautenschlager (M&D) / / 5 ENES Partners

M. Lautenschlager (M&D) / / 6 Traffic Matrix DKRZ (G) Archive: 3.5 Tbytes/day Restore: 1.5 Tbytes/day Total: 600 Tbytes Hadley Centre (GB) Archive: 250 Gbytes/day Restore: 400 Gbytes/day Total: 200 Tbytes Mass Storage Archives Extrapolation of data rates depends on installed compute power and application profiles (comp. Use Cases) IPSL (F) Archive: 170 Gbytes/day Restore: 330 Gbytes/day

M. Lautenschlager (M&D) / / 7 Traffic Matrix: Questions  What is the minimum, guaranteed bandwidth?  What is the average bandwidth?  What is the peak bandwidth?  What are the quality requirements especially latency?

M. Lautenschlager (M&D) / / 8 Traffic Matrix: Alcatel - Questionaire  Server included DKRZ: Sun-Solaris and Linux (Suse + Red Hat) for data, NEC SX6 for computing Hadley: IBM Z-series for data, NEC + Cray T3E for computing, HP UX server for web IPSL: NEC SX5, IBM SP4, Fujitsui VPP, Compaq for computing, SGI for data  Protocols DKRZ: TCP/IP Hadley: TCP/IP IPSL: TCP/IP

M. Lautenschlager (M&D) / / 9  Services DKRZ: External: Apache, proftp, OpenSSH, SMTP, cvs, Oracle Appl.Server + DB-Server, Open DAP Internal: LDAP, NIS, NFS, CUPS Hadley: very similar IPSL: very similar, Open DAP  Client Systems DKRZ: Sun-Solaris, Windows 2000, Linux, (Mac) Hadley: Linux, HP-UX Windows XP IPSL: Sun-Solaris, Windows 2000, Linux, Mac Traffic Matrix: Alcatel - Questionaire

M. Lautenschlager (M&D) / / 10  Applications for ENES Model development Run coupled climate models Process and analyse climate model data Process and analyse observations  Future DKRZ: We plan for a European Climate Computing Facility because our analysis so far shows that distributed computing is not an option for single model components (needs further investigation). Hadley: Future grid applications will include tools for finding, navigating and extracting subsets of model and observation datasets. Also possibly tools for model intercomparison and running ensembles of different models. Traffic Matrix: Alcatel - Questionaire

M. Lautenschlager (M&D) / / 11 Future Development Path Internet Access DB Access HSM Access

M. Lautenschlager (M&D) / / 12 (IV/2001) January 2003: 600 TB

M. Lautenschlager (M&D) / / 13 CERA-DB Access

M. Lautenschlager (M&D) / / 14 CERA DB Access  Number of Downloads in 2002: 2000 – 5000 / month 80% are external  Total Data Volume: 100 – 400 GB / month  Data per Download: 50 – 100 MB Current database size is Terabyte Number of experiments: 288 Number of datasets: Number of blob within cera at 28-JAN-03:

M. Lautenschlager (M&D) / / 15 FTP-Access to UniTree-System Up to > Read : Write = 2 : 1 for climate datasets Data rates January 2003: 1.5 TB/day Read 3.5 TB/day Write

M. Lautenschlager (M&D) / / 16 DKRZ-Internet: G-WiN Received by DKRZ Sent by DKRZ

M. Lautenschlager (M&D) / / 17 Statistik ERA40 Daten ===================== load size | | | | Mon. MB start end diff rate start end diff rate : :15 09:08=188MB/h 23-08: :37 :35=2.9GB/h : :49 07:34=205MB/h 23-10: :05 :30=3.1GB/h : :30 09:41=178MB/h 23-16: :09 :35=2.9GB/h : :30 10:00=166MB/h 24-11: :31 :31=3.1GB/h : :16 07:46=221MB/h 24-12: :14 :35=2.9GB/h : :10 12:56=129MB/h 24-23: :54 :32=3.0GB/h : :15 11:05=155MB/h 25-12: :17 :37=2.8GB/h : :34 09:19=185MB/h 25-23: :24 :36=2.9GB/h : :49 07:15=230MB/h 26-10: :48 :37=2.8GB/h : :21 06:32=263MB/h 26-10: :51 :39=2.7GB/h : :31 06:10=270MB/h 26-20: :16 :34=3.0GB/h : :01 05:30=313MB/h 26-20: :19 :36=2.9GB/h Example WAN Data Transfer File Size Retrieval Rate Transfer Rate

M. Lautenschlager (M&D) / / 18 ERA40 - Data Transfer: ECMWF  DKRZ Data extraction from ECMWF Archive (Retrieval):  daily average 200 MB/h (single request)  day time 170 MB/h,  night time and week end 300 MB/h FTP download (Transfer):  1 GB in 20 minutes per transfer process,  also 1 GB / 20 min / transfer for two parallel FTP's

M. Lautenschlager (M&D) / / 19 UC: Uses Cases 2D / 3D time series Raw data transfer Blending of different data sources

M. Lautenschlager (M&D) / / 20 Standard Model Resolution Number of horizontal grid points for entire globe T42: 64 x 128 points (present) T63: 96 x 192 points (next) T106: 160 x 320 points (future)

M. Lautenschlager (M&D) / / 21 UC: Transfer Data Volume and Response Time Requirements  Basic application: time series access (TS) 2D and 3D TS from 500 model years as monthly means (MM), response time of 5 sec 2D and 3D TS from 100 model years with 6 hours storage interval (6H), response time of 10 sec Raw data TS output from 50 model years, response time of 20 sec  Model configurations T42-L19: 17.5 KB/global-field, 0.4 GB/model-month T63-L31: 37.5 KB/global-field, 1.5 GB/model-month T106-L31: KB/global-field, 5.6 GB/model-month

M. Lautenschlager (M&D) / / 22 DT: Time Series and Data Transfer Volume TSLengthT42-L19T63-L31T106-L31 2D (MM)500 Y D (MM)500 Y2718 2D (6H)100 Y3514 3D (6H)100 Y Raw50 Y Units: GB (Table entries are rounded.)

M. Lautenschlager (M&D) / / 23 DT: Response Time and Net Band Width on Application Level TS Response Time T42-L19T63-L31T106-L31 2D (MM)5 sec D (MM)5 sec D (6H)10 sec2410 3D (6H)10 sec Raw20 sec Units: Gbit/sec (Table entries are rounded.) ERA40: Gbit/sec

M. Lautenschlager (M&D) / / 24 Traffic Matrix: Working Hypothesis  Dynamic infrastructure which takes into account changing distribution of "hot spots" and flexible adaptation to applications. Layer 1: Hot Spots (peak = 1.4 Tbit/s) ECMWF, Exeter, Hamburg, France, Poland?, Scandinavia?, Italy? (Users/Producers) Layer 2: ENES Partners + e.g. Earth Simulator Community, Earth System Grid,.... (30% of peak) MPI-M, NERSC, IPSL, DMI, KNMI, CGAM, Meteo-France, CERFACS, CSCS, SMHI, UCL, INGV, MPI-BGC, IfM Kiel, CRU-UEA, FZJ, ICMCM, Hamburg University, AWI, IfM-Berlin, ZIB Layer 3: Rest of the World (5% of peak)  What is the minimum, guaranteed bandwidth? 10 % of peak(1,2,3)  What is the average bandwidth? 50% of peak(1,2,3)  What is the peak bandwidth? Peak(1,2,3) for 10% of day