Based on slides by:Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. ECE/CS 352: Digital System Fundamentals Lecture 6 – Canonical Forms.

Slides:



Advertisements
Similar presentations
Chapter 2 Logic Circuits.
Advertisements

Morgan Kaufmann Publishers
Boolean Algebra and Logic Gates 1 Computer Engineering (Logic Circuits) Lec. # 4 Dr. Tamer Samy Gaafar Dept. of Computer & Systems Engineering Faculty.
ECE 301 – Digital Electronics Minterm and Maxterm Expansions and Incompletely Specified Functions (Lecture #6) The slides included herein were taken from.
ECE 331 – Digital System Design
Logic Gate Level Part 2. Constructing Boolean expression from truth table First method: write nonparenthesized OR of ANDs Each AND is a 1 in the result.
SYEN 3330 Digital SystemsJung H. Kim Chapter SYEN 3330 Digital Systems Chapter 2 Part 3.
Chapter 2 – Combinational Logic Circuits Part 1 – Gate Circuits and Boolean Equations Logic and Computer Design Fundamentals.
Overview Part 1 – Gate Circuits and Boolean Equations
CS 151 Digital Systems Design Lecture 6 More Boolean Algebra A B.
Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal approach to simplification that is.
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Edited by Dr. Muhamed Mudawar for COE 202 & EE 200 at KFUPM) Boolean Algebra and Logic Gates.
28/06/041 CSE-221 Digital Logic Design (DLD) Lecture-5: Canonical and Standard forms and Integrated Circuites.
CSCE 211: Digital Logic Design
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 2 – Combinational Logic Circuits Part 1.
Digital Fundamentals with PLD Programming Floyd Chapter 4
Boolean Algebra and Logic Simplification. Boolean Addition & Multiplication Boolean Addition performed by OR gate Sum Term describes Boolean Addition.
1 COMBINATIONAL LOGIC One or more digital signal inputs One or more digital signal outputs Outputs are only functions of current input values (ideal) plus.
Switching functions The postulates and sets of Boolean logic are presented in generic terms without the elements of K being specified In EE we need to.
ECE 331 – Digital System Design
 Seattle Pacific University EE Logic System DesignSOP-POS-1 The Connection: Truth Tables to Functions abcF abcF
1 Representation of Logic Circuits EE 208 – Logic Design Chapter 2 Sohaib Majzoub.
Department of Computer Engineering
Lecture 7 Topics –Boolean Algebra 1. Logic and Bits Operation Computers represent information by bit A bit has two possible values, namely zero and one.
Combinational Logic 1.
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. Circuit Optimization Logic and Computer Design Fundamentals.
Overview Part 1 – Gate Circuits and Boolean Equations
CHAPTER 3: PRINCIPLES OF COMBINATIONAL LOGIC
1 Boolean Algebra  Digital circuits Digital circuits  Boolean Algebra Boolean Algebra  Two-Valued Boolean Algebra Two-Valued Boolean Algebra  Boolean.
Digital Logic Design Week 4 Boolean algebra. Laws and rules De Morgan’s theorem Analysis of logic circuits Standard forms Project 1 preparation.
ENGIN112 L6: More Boolean Algebra September 15, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra A B.
ece Parity Used to check for errors Can be either ODD or EVEN Left most bit used as the indicator For EVEN, insert a 0 or a 1 so as to make the.
LOGIC CIRCUITLOGIC CIRCUIT. Goal To understand how digital a computer can work, at the lowest level. To understand what is possible and the limitations.
1 EENG 2710 Chapter 2 Algebraic Methods For The Analysis and Synthesis of Logic circuits.
A. Abhari CPS2131 Chapter 2: Boolean Algebra and Logic Gates Topics in this Chapter: Boolean Algebra Boolean Functions Boolean Function Simplification.
1 Lect # 2 Boolean Algebra and Logic Gates Boolean algebra defines rules for manipulating symbolic binary logic expressions. –a symbolic binary logic expression.
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 2 – Combinational Logic Circuits Part 1.
Module –I Switching Function
Fundamentals of digital electronics Prepared by - Anuradha Tandon Assistant Professor, Instrumentation & Control Engineering Branch, IT, NU.
Floyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd Chapter 4 © 2008 Pearson Education.
CS151 Introduction to Digital Design Chapter Map Simplification.
Chapter 2: Basic Definitions BB inary Operators ●A●AND z = x y = x yz=1 if x=1 AND y=1 ●O●OR z = x + yz=1 if x=1 OR y=1 ●N●NOT z = x = x’ z=1 if x=0.
ECE/CS 352 Digital System Fundamentals© T. Kaminski & C. Kime 1 ECE/CS 352 Digital Systems Fundamentals Spring 2001 Chapter 2 Part 3 Tom Kaminski & Charles.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Logic Design Dr. Oliver Faust.
ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Lecture 4 Dr. Shi Dept. of Electrical and Computer Engineering.
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 2 – Combinational Logic Circuits Part 1.
ECE DIGITAL LOGIC LECTURE 8: BOOLEAN FUNCTIONS Assistant Prof. Fareena Saqib Florida Institute of Technology Spring 2016, 02/11/2016.
Standard & Canonical Forms COE 202 Digital Logic Design Dr. Aiman El-Maleh College of Computer Sciences and Engineering King Fahd University of Petroleum.
Lecture 5 More Boolean Algebra A B. Overview °Expressing Boolean functions °Relationships between algebraic equations, symbols, and truth tables °Simplification.
DeMorgan’s Theorem DeMorgan’s 2 nd Theorem The complement of a sum of variables is equal to the product of the complemented variables. A + B = A. B Applying.
Based on slides by:Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. ECE/CS 352: Digital System Fundamentals Lecture 7 – Karnaugh Maps.
1 CS 352 Introduction to Logic Design Lecture 2 Ahmed Ezzat Boolean Algebra and Its Applications Ch-3 + Ch-4.
CHAPTER 2 Boolean algebra and Logic gates
Canonical Forms BIL- 223 Logic Circuit Design Ege University Department of Computer Engineering.
Boolean Algebra and Logic Gates COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals.
DeMorgan’s Theorem DeMorgan’s 2nd Theorem
Overview Part 1 – Gate Circuits and Boolean Equations
ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 Instructor: Andrew B. Kahng (lecture)
CS 105 Digital Logic Design
Complement of a Function
ECE/CS 352 Digital Systems Fundamentals
Princess Sumaya University
Boolean Algebra.
Boolean Algebra.
Chapter 2 Boolean Algebra and Logic Gate
Functions Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways: We can represent.
BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION Part (a)
SYEN 3330 Digital Systems Chapter 2 Part 3 SYEN 3330 Digital Systems.
Analysis of Logic Circuits Example 1
Presentation transcript:

Based on slides by:Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. ECE/CS 352: Digital System Fundamentals Lecture 6 – Canonical Forms

Chapter 2 2 Outline  What are Canonical Forms?  Minterms and Maxterms  Index Representation of Minterms and Maxterms  Sum-of-Minterm (SOM) Representations  Product-of-Maxterm (POM) Representations  Representation of Complements of Functions  Conversions between Representations

Chapter 2 3 Canonical Forms  It is useful to specify Boolean functions in a form that: Allows comparison for equality. Has a correspondence to the truth tables  Canonical Forms in common usage: Sum of Minterms (SOM) Product of Maxterms (POM)

Chapter 2 4 Minterms  Minterms are AND terms with every variable present in either true or complemented form.  Given that each binary variable may appear normal (e.g., x) or complemented (e.g., ), there are 2 n minterms for n variables.  Example: Two variables (X and Y)produce 2 x 2 = 4 combinations: (both normal) (X normal, Y complemented) (X complemented, Y normal) (both complemented)  Thus there are four minterms of two variables. YX XY YX YX x

Chapter 2 5 Maxterms  Maxterms are OR terms with every variable in true or complemented form.  Given that each binary variable may appear normal (e.g., x) or complemented (e.g., x), there are 2 n maxterms for n variables.  Example: Two variables (X and Y) produce 2 x 2 = 4 combinations: (both normal) (x normal, y complemented) (x complemented, y normal) (both complemented) YX  YX  YX  YX 

Chapter 2 6  Examples: Two variable minterms and maxterms.  The index above is important for describing which variables in the terms are true and which are complemented. Maxterms and Minterms IndexMintermMaxterm 0x yx + y 1x yx + y 2x yx + y 3x yx + y

Chapter 2 7 Standard Order  Minterms and maxterms are designated with a subscript  The subscript is a number, corresponding to a binary pattern  The bits in the pattern represent the complemented or normal state of each variable listed in a standard order.  All variables will be present in a minterm or maxterm and will be listed in the same order (usually alphabetically)  Example: For variables a, b, c: Maxterms: (a + b + c), (a + b + c) Terms: (b + a + c), a c b, and (c + b + a) are NOT in standard order. Minterms: a b c, a b c, a b c Terms: (a + c), b c, and (a + b) do not contain all variables

Chapter 2 8 Purpose of the Index  The index for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.  For Minterms: “1” means the variable is “Not Complemented” and “0” means the variable is “Complemented”.  For Maxterms: “0” means the variable is “Not Complemented” and “1” means the variable is “Complemented”.

Chapter 2 9 Index Example in Three Variables  Example: (for three variables)  Assume the variables are called X, Y, and Z.  The standard order is X, then Y, then Z.  The Index 0 (base 10) = 000 (base 2) for three variables). All three variables are complemented for minterm 0 ( ) and no variables are complemented for Maxterm 0 ( X,Y,Z ). Minterm 0, called m 0 is. Maxterm 0, called M 0 is (X + Y + Z). Minterm 6 ? Maxterm 6 ? Z,Y,X ZYX m6 = X Y Z’ M6 = (X’ + Y’ + Z)

Chapter 2 10  Review: DeMorgan's Theorem and  Two-variable example: and Thus M 2 is the complement of m 2 and vice-versa.  Since DeMorgan's Theorem holds for n variables, the above holds for terms of n variables  giving: and Thus M i is the complement of m i. Minterm and Maxterm Relationship yx y· x  yxyx  y x M 2  yx· m 2  i mM  i i i Mm 

Chapter 2 11 Function Tables for Both  Minterms of Maxterms of 2 variables 2 variables  Each column in the maxterm function table is the complement of the column in the minterm function table since M i is the complement of m i.

Chapter 2 12 Observations  In the function tables: Each minterm has one and only one 1 present in the 2 n terms (a minimum of 1s). All other entries are 0. Each maxterm has one and only one 0 present in the 2 n terms All other entries are 1 (a maximum of 1s).  We can implement any function by "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function.  We can implement any function by "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.  This gives us two canonical forms: Sum of Minterms (SOM) Product of Maxterms (POM) for stating any Boolean function.

Chapter 2 13 Minterm Function Example  Example: Find F 1 = m 1 + m 4 + m 7  F1 = x y z + x y z + x y z

Chapter 2 14 Maxterm Function Example  Example: Implement F1 in maxterms: F 1 = M 0 · M 2 · M 3 · M 5 · M 6 )z y z)·(x y ·(x z) y (x F 1  z) y x)·(z y x·( 

Chapter 2 15 Canonical Sum of Minterms  Any Boolean function can be expressed as a Sum of Minterms. For the function table, the minterms used are the terms corresponding to the 1's For expressions, expand all terms first to explicitly list all minterms. Do this by “ANDing” any term missing a variable v with a term ( ).  Example: Implement as a sum of minterms. First expand terms: Then distribute terms: Express as sum of minterms: f = m 3 + m 2 + m 0 yxxf  yx)yy(xf  yxyxxyf  vv 

Chapter 2 16 Another SOM Example  Example:  There are three variables, A, B, and C which we take to be the standard order.  Expanding the terms with missing variables: F = A(B + B’)(C + C’) + (A + A’) B’ C = ABC + ABC’ + AB’C + AB’C’ + AB’C + A’B’C  Collect terms (removing all but one of duplicate terms): = ABC + ABC’ + AB’C + AB’C’ + A’B’C  Express as SOM: = m 7 + m 6 + m 5 + m 4 + m 1 = m 1 + m 4 + m 5 + m 6 + m 7 C B A F 

Chapter 2 17 Shorthand SOM Form  From the previous example, we started with:  We ended up with: F = m 1 +m 4 +m 5 +m 6 +m 7  This can be denoted in the formal shorthand:  Note that we explicitly show the standard variables in order and drop the “m” designators. C B A F 

Chapter 2 18 Canonical Product of Maxterms  Any Boolean Function can be expressed as a Product of Maxterms (POM). For the function table, the maxterms used are the terms corresponding to the 0's. For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, “ORing” terms missing variable v with a term equal to and then applying the distributive law again.  Example: Convert to product of maxterms: A pply the distributive law: Add missing variable z: Express as POM: f = M 2 · M 3 yxx)z,y,x(f  yx )y(x 1 )y)(xx(x y xx    zyx)zyx(zzyx    vv  A+BC = (A+B)(A+C)

Chapter 2 19  Convert to Product of Maxterms:  Use x + y z = (x+y)·(x+z) with, and to get:  Then use to get: and a second time to get:  Rearrange to standard order, to give f = M 5 · M 2 Another POM Example BA CB CA C)B,f(A,  B z  )B CB C)(AA CB C(A f  y x yx x  )B C C)(AA BC C( f  )B C )(AA B C( f  C) B )(AC B A( f  A yC),B (A x  C

Chapter 2 20 Function Complements  The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.  Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices.  Example: Given )7,5,3,1( )z,y,x(F m  )6,4,2,0()z,y,x( F m  )7,5,3,1()z,y,x(F M 

Chapter 2 21 Conversion Between Forms  To convert between sum-of-minterms and product- of-maxterms form (or vice-versa) we follow these steps: Find the function complement by swapping terms in the list with terms not in the list. Change from products to sums, or vice versa.  Example:Given F as before:  Form the Complement:  Then use the other form with the same indices – this forms the complement again, giving the other form of the original function: )6,4,2,0( )z,y,x(F m 

Chapter 2 22  Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms  Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms  Examples: SOP: POS:  These “mixed” forms are neither SOP nor POS Standard Forms B C B A C B A   C · ) C B (A · B) (A  C) (A C) B (A  B) (A C A C B A 

Chapter 2 23 Standard Sum-of-Products (SOP)  A sum of minterms form for n variables can be written down directly from a truth table. Implementation of this form is a two-level network of gates such that: The first level consists of n-input AND gates, and The second level is a single OR gate (with fewer than 2 n inputs).  This form often can be simplified so that the corresponding circuit is simpler.

Chapter 2 24  A Simplification Example:   Writing the minterm expression: F = A'B'C + AB'C' + AB'C + ABC' + ABC  Simplifying: F = A’ B’ C + A (B’ C’ + B C’ + B’ C + B C) = A’ B’ C + A (B’ + B) (C’ + C) = A’ B’ C + A = A’ B’ C + A = B’C + A  Simplified F contains 3 literals compared to 15 in minterm F Standard Sum-of-Products (SOP)

Chapter 2 25 AND/OR Two-level Implementation of SOP Expression  The two implementations for F are shown below – it is quite apparent which is simpler!

Chapter 2 26 SOP and POS Observations  The previous examples show that: Canonical Forms (Sum-of-minterms, Product-of- Maxterms), or other standard forms (SOP, POS) differ in complexity Boolean algebra can be used to manipulate equations into simpler forms. Simpler equations lead to simpler two-level implementations  Questions: How can we attain a “simplest” expression? Is there only one minimum cost circuit? The next lecture will deal with these issues.

Chapter 2 27 Summary  What are Canonical Forms?  Minterms and Maxterms  Index Representation of Minterms and Maxterms  Sum-of-Minterm (SOM) Representations  Product-of-Maxterm (POM) Representations  Representation of Complements of Functions  Conversions between Representations