The Ambiguous Case for the Law of Sines 5.7 The Ambiguous Case for the Law of Sines
AMBIGUOUS Open to various interpretations Having double meaning Difficult to classify, distinguish, or comprehend /ctr
Opposite sides of angles of a triangle RECALL: Opposite sides of angles of a triangle Interior Angles of a Triangle Theorem Triangle Inequality Theorem /ctr
Triangles that do not have right angles RECALL: Oblique Triangles Triangles that do not have right angles (acute or obtuse triangles) /ctr
RECALL: LAW OF SINE – 1 sin 1 /ctr
Sine values of supplementary angles are equal. RECALL: Sine values of supplementary angles are equal. Example: Sin 80o = 0.9848 Sin 100o = 0.9848 /ctr
Law of Sines: The Ambiguous Case Given: lengths of two sides and the angle opposite one of them (S-S-A) /ctr
Possible Outcomes Case 1: If A is acute and a < b a. If a < b sinA a C b a h = b sin A b B A h c A B c NO SOLUTION
Possible Outcomes Case 1: If A is acute and a < b b. If a = b sinA h = b sin A b h = a A c B 1 SOLUTION
Possible Outcomes Case 1: If A is acute and a < b h = b sin A b. If a > b sinA C b a h a 180 - A B B c 2 SOLUTIONS
Possible Outcomes Case 2: If A is obtuse and a > b C a b A c B ONE SOLUTION
Possible Outcomes Case 2: If A is obtuse and a ≤ b C a b A c B NO SOLUTION
Determine the number of possible solutions for each triangle. i) A=30deg a=8 b=10 ii) b=8 c = 10 B = 118 deg
Find all solutions for each triangle. i) a = 4 b = 3 A = 112 degrees ii) A = 51 degrees a = 40 c = 50
EXAMPLE 1 Given: ABC where a = 22 inches b = 12 inches a>b mA = 42o a>b mA > mB SINGLE–SOLUTION CASE (acute) Find m B, m C, and c.
sin A = sin B a b Sin B 0.36498 mB = 21.41o or 21o Sine values of supplementary angles are equal. The supplement of B is B2. mB2=159o
mC = 180o – (42o + 21o) mC = 117o sin A = sin C a c c = 29.29 inches SINGLE–SOLUTION CASE
sin A = sin B a b Sin B 1.66032 mB = ? Sin B > 1 NOT POSSIBLE ! Recall: – 1 sin 1 NO SOLUTION CASE /ctr
EXAMPLE 3 Given: ABC where b = 15.2 inches a = 20 inches b < a mB = 110o b < a NO SOLUTION CASE (obtuse) Find m B, m C, and c.
sin A = sin B a b Sin B 1.23644 mB = ? Sin B > 1 NOT POSSIBLE ! Recall: – 1 sin 1 NO SOLUTION CASE /ctr
EXAMPLE 4 Given: ABC where a = 24 inches b = 36 inches a < b mA = 25o a < b a ? b sin A 24 > 36 sin 25o TWO – SOLUTION CASE (acute) Find m B, m C, and c.
sin A = sin B a b Sin B 0.63393 mB = 39.34o or 39o The supplement of B is B2. mB2 = 141o mC1 = 180o – (25o + 39o) mC1 = 116o mC2 = 180o – (25o+141o) mC2 = 14o
sin A = sin C a c1 c1 = 51.04 inches sin A = sin C a c2 /ctr
EXAMPLE 3 Final Answers: mB1 = 39o mC1 = 116o c1 = 51.04 in. TWO – SOLUTION CASE /ctr
Find m B, m C, and c, if they exist. SEATWORK: (notebook) Answer in pairs. Find m B, m C, and c, if they exist. 1) a = 9.1, b = 12, mA = 35o 2) a = 25, b = 46, mA = 37o 3) a = 15, b = 10, mA = 66o /ctr
Answers: 1)Case 1: mB=49o,mC=96o,c=15.78 Case 2: 2)No possible solution. 3)mB=38o,mC=76o,c=15.93 /ctr