Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < 10 -14 cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.

Slides:



Advertisements
Similar presentations
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Advertisements

The National Science FoundationThe Kavli Foundation APS April 2008 Meeting - St. Louis, Missouri Results from Cosmic-Ray Experiments Vasiliki Pavlidou.
Neutrino astronomy with Antares Aart Heijboer. Research to fundamental building blocks of matter Research on the Universe using those particles.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Neutrino Masses, Leptogenesis and Beyond The Incredible Foresight of ETTORE MAJORANA Haim Harari Erice, August 31, 2006.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Cosmic Rays Basic particle discovery. Cosmic Rays at Earth – Primaries (protons, nuclei) – Secondaries (pions) – Decay products (muons, photons, electrons)
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
High Energy  -rays Roger Blandford KIPAC Stanford.
ANTARES aims, status and prospects Susan Cartwright University of Sheffield.
ANITA Meeting UC Irvine 23 November 2002 EHE Cosmic Rays, EHE Neutrinos and GeV- TeV Gamma rays David Kieda University of Utah Department of Physics.
Large Magellanic Cloud, 1987 (51.4 kparsec) SN 1987a after before 2006 Hubble.
Survey of the Universe Greg Snow U Nebraska Lincoln CROP.
1 The elusive neutrino Piet Mulders Vrije Universiteit Amsterdam Fysica 2002 Groningen.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
A Visit to Ghost Ranch Jim Linnemann Michigan State University & Los Alamos National Laboratory June 18, 2003.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
Gamma-ray Astrophysics Pulsar GRB AGN SNR Radio Galaxy The very high energy  -ray sky NEPPSR 25 Aug Guy Blaylock U. of Massachusetts Many thanks.
Survey of the Universe We live in an expanding Universe What’s within 50 Megaparsecs = 150 Million Light Years from us? Why is this distance relevant to.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
LHC ~E -2.7 ~E -3 ankle 1 part km -2 yr -1 knee 1 part m -2 yr -1 T. Gaisser 2005 Nature accelerates particles 10 7 times the energy of LHC! where?how?
E. MignecoErice ISCRA, July Introduction to High energy neutrino astronomy Erice ISCRA School 2004 Emilio Migneco.
Spåtind Norway P.O.Hulth Cosmic Neutrinos and High Energy Neutrino Telescopes Spåtind 2006 lecture 1 Per Olof Hulth Stockholm University
Nebular Astrophysics.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
Ice-fishing for Cosmic Neutrinos Subhendu Rakshit TIFR, Mumbai.
KM3NET 24 September 2004 Gerard van der Steenhoven (NIKHEF)
Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV.
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 12. Cosmic rays.
ANTARES  Physics motivation  Recent results  Outlook 4 senior physicists, ~5 PhD students, ~5 technicians M. de Jong RECFA 23 September 2005.
Collisions: Cosmic Accelerators the sky > 10 GeV photon energy the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8.
Space-based Gamma-ray Astronomy Liz Hays (NASA Goddard Space Flight Center)
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Cosmic Rays GNEP Teacher Workshop Steve Shropshire, July 2007.
Discovery of  rays from Star-Forming Galaxies New class of nonthermal sources/gamma-ray galaxies (concept of temperature breaks down at high energies)
Aspen Institute for Physics 02 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles.
Application of neutrino spectrometry
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
L EPTONIC NEUTRINOS Arunava Bhadra High Energy & Cosmic Ray Research Ctr. North Bengal University My collaborators: Prabir Banik and Biplab Bijay.
con i neutrini1 Showering Neutrino Astronomies at Horizons.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:
Dr. Karsten Berger Instituto de Astrofisica de Canarias, La Laguna, Spain.
1st page of proposal with 2 pictures and institution list 1.
PHY418 Particle Astrophysics
Diffuse Emission and Unidentified Sources
Seeing the Sky Underground The Birth of Neutrino Astronomy Chiaki Yanagisawa Stony Brook University October 13, 2007 Custer Institute.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
Neutrino Particle Astrophysics John CARR Centre de Physique des Particules de Marseille / IN2P3 / CNRS.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
WIN 02 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s Eye/Hires.
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
A black hole: The ultimate space-time warp Ch. 5.4 A black hole is an accumulation of mass so dense that nothing can escape its gravitational force, not.
1 Neutrinos at the South Pole Particle Astrophysics at Maryland Neutrinos –Where they fit in the Standard Model Astrophysical Neutrino sources IceCube.
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
Astroparticle Physics (3/3)
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
Neutrino Astronomy introductionintroduction the cosmic ray puzzle revisitedthe cosmic ray puzzle revisited theory of high energy neutrino detectiontheory.
Italy Pizza, Mozzarella di Buffala Switzerland Roesti, Cheese Fondue
The Antares Neutrino Telescope
science with 40 IceCube strings
Neutrinos as probes of ultra-high energy astrophysical phenomena
Predictions of Ultra - High Energy Neutrino fluxes
Presentation transcript:

Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s Eye/Hires they should not they should not more/better data more/better data arrays of air Cherenkov telescopes 10 4 km 2 air shower arrays ~ km 3 neutrino detectors

Energy (eV ) Radio CMB Visibe GeV  -rays 1 TeV Flux

TeV sources! cosmic rays //////////////////////////////////

 +    e + + e - With 10 3 TeV energy, photons do not reach us from the edge of our galaxy because of their small mean free path in the microwave background.

fluorescence from atmospheric nitrogen cosmic ray fluorescent light electromagnetic shower  o     +_+_ +_+_

Acceleration to eV? ~10 2 Joules ~ 0.01 M GUT dense regions with exceptional gravitational force creating relativistic flows of charged particles, e.g. annihilating black holes/neutron stars dense cores of exploding stars supermassive black holes

Cosmic Accelerators E ~  BM energy magnetic field boost factor mass E ~  cBR R ~ GM/c 2

E ~  B M quasars  1 B  10 3 G M  10 9 M sunquasars  1 B  10 3 G M  10 9 M sun blasars  10blasars  10 neutron stars   1  B  G M  M sunneutron stars   1  B  G M  M sun black holes black holes.. grb  10 2grb  10 2 E > eV ? emit highest energy  ’s! >~ >~

Profile of Gamma Ray Bursts Total energy: one solar massTotal energy: one solar mass Photon energy: 0.1 MeV to TeVPhoton energy: 0.1 MeV to TeV Duration: 0.1 secs minDuration: 0.1 secs min Several per daySeveral per day Brightest object in the skyBrightest object in the sky Complicated temporal structure:Complicated temporal structure: no ‘typical’ burst profile

A few more results … Gamma Ray Bursts (GRBs) –Observation of single 3  excess (GRB a) within 1997 BATSE trigger. Flux limit for unidentified TeV point sources –For E spectrum AMANDA II will probe this flux for Flux (>1 TeV) < 2 – 30 x cm -2 s 90% However,  spectrum probably softer due to reprocessing (core) and absorption in photon BG /  = 1 /  = 1

Particles > eV ? not protons cannot reach us from cosmic accelerators cannot reach us from cosmic accelerators int < 50 Mpc int < 50 Mpc no diffusion in magnetic fields no diffusion in magnetic fields doublets, triplet not photons  + B earth e + + e - not seen  + B earth e + + e - not seen showers not muon-poor showers not muon-poor not neutrinos  p   pp  no air showers  p   pp  no air showers

Interaction length of protons in microwave background p +  CMB  + ….   p = ( n CMB   ) -1  10 Mpc  10 Mpc p +  CMB GZK cutoff

Forthcoming AGASA Results The highest energy cosmic rays do come from point sources: 5 sigma correlation between directions of pairs of particles. Birth of proton astronomy!The highest energy cosmic rays do come from point sources: 5 sigma correlation between directions of pairs of particles. Birth of proton astronomy! Are the highest energy cosmic rays Fe?Are the highest energy cosmic rays Fe? GKZ cutoff at ~ eV ? GKZ cutoff at ~ eV ?

new astrophysics? trouble for top-down scenarios   p    pp with TeV - gravity unitarity? Particles > eV ? not protons cannot reach us from cosmic accelerators int < 50 Mpc no diffusion in magnetic fields doublets, triplet not photons  + B earth e + + e - not seen showers not muon-poor not neutrinos  p   pp  no air showers

10 24 eV = GeV ~ M GUT topological defects (vibrating string, annihilating monopoles) heavy relics? Top. Def.  X,Y  W, Z  quark + leptons   >> p    top-down spectrum hierarchy      p are cosmic rays the decay product of _

radiation enveloping black hole

cosmic ray puzzle protons TeV  - rays neutrinos ~ 10 4 km 2 air shower air shower arrays arrays e.g. also atmospheric Cherenkovatmospheric Cherenkov space-basedspace-based short-wavelengthshort-wavelength study of supernova remnants and galaxies ~ 1 km 3 high energy detectors particle physicsparticle physics and cosmology and cosmology dark matter searchdark matter search discoverydiscovery AMANDA / Ice CubeAMANDA / Ice Cube Antares, Nestor, NEMO Hi Res, Auger,Hi Res, Auger,Airwatch, OWL, TA… Veritas, Hess, Magic …Veritas, Hess, Magic … GLAST…GLAST…

Array => Very large effective area (10 5 m 2 ) => 3-dim shower reconstruction => Dramatic improvements in - Energy Resolution - Background Rejection

STACEE Solar Tower Atmospheric Cherenkov Effect Experiment Gamma-ray Astrophysics between GeV

e + e W  +  6400 TeV

PeV  (300m)    decays

Why is Searching for ’s from GRBs of Interest? Search for vacuum oscillations (    ):Search for vacuum oscillations (    ):  m 2  eV 2  m 2  eV 2 Test weak equivalence principle: 10 -6Test weak equivalence principle: Test : Test : >~ C photon - C C photon - C C C

Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s Eye/Hires they should not they should not more/better data more/better data arrays of air Cherenkov telescopes 10 4 km 2 air shower arrays ~ km 3 neutrino detectors

TeV sources! cosmic rays //////////////////////////////////