The s-process in low metallicity stars Roberto Gallino (1) Sara Bisterzo (1) Oscar Straniero (2) I. I. Ivans (3, 4) F. Kaeppeler (5) (1) Dipartimento di.

Slides:



Advertisements
Similar presentations
THE EFFECT OF 12 C(α,γ) 16 O ON WHITE DWARF EVOLUTION Pier Giorgio Prada Moroni Dipartimento di Fisica - Università di Pisa Osservatorio Astronomico di.
Advertisements

Alessandro Chieffi (Istituto di Astrofisica Spaziale e Fisica Cosmica & INAF)
The origin of heavy elements in the solar system
Neutron-capture Elements in M15 Kaori Otsuki (U Chicago), S. Honda, W. Aoki, T. Kajino (NAOJ) J. W. Truran, V. Dwarkadas, A. Medina (U Chicago) G. J. Mathews.
Carbon Enhanced Stars in the Sloan Digital Sky Survey ( SDSS ) T. Sivarani, Young Sun Lee, B. Marsteller & T. C. Beers Michigan State University & Joint.
Asymptotic Giant Branch. Learning outcomes Evolution and internal structure of low mass stars from the core He burning phase to the tip of the AGB Nucleosynthesis.
Lithium abundance in the globular cluster M4: from the Turn-Off up to the RGB Bump Collaborators: M. Salaris (University of Liverpool, UK) L. Lovisi, F.R.
S-Process in C-Rich EMPS: predictions versus observations Sara Bisterzo (1) Roberto Gallino (1) Oscar Straniero (2) I. I. Ivans (3, 4) and Wako Aoki, Sean.
Branchings, neutron sources and poisons: evidence for stellar nucleosynthesis Maria Lugaro Astronomical Institute University of Utrecht (NL)
Trace Element Abundances in Single Presolar SiC Stardust Grains by Synchrotron X-Ray Fluorescence (SXRF) Zhonghu Cai (XOR) Barry Lai (XOR) Steve Sutton.
INAF-Osservatorio Astronomico di Padova Dipartimento di Astronomia, Università di Padova.
Helium-enhancements in globular cluster stars from AGB pollution Amanda Karakas 1, Yeshe Fenner 2, Alison Sills 1, Simon Campbell 3 & John Lattanzio 3.
Abundances in Presolar Grains, Stars and the Galaxy Larry R. Nittler Department of Terrestrial Magnetism Carnegie Institution of Washington.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio, Dec 2003 Abundances in NGC6752.
Astrophysical Reaction Rate for the Neutron-Generator Reaction 13 C(α,n) in Asymptotic Giant Branch Stars Eric Johnson Department of Physics Florida State.
The s-process Fe Co Ni Rb Ga Ge Zn Cu Se Br As Zr Y Sr Kr (n,  ) ()() ()() r-process p-process 63 Ni, t 1/2 =100 a 64 Cu, t 1/2 =12 h, 40 % (
A new approach to the 176 Lu puzzle  clock or thermometer? an astrophysical quest and a nuclear challenge  20 years of nuclear physics level schemes,
The s-process Fe Co Ni Rb Ga Ge Zn Cu Se Br As Zr Y Sr Kr (n,  ) ()() ()() r-process p-process 63 Ni, t 1/2 =100 a 64 Cu, t 1/2 =12 h, 40 % (
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio Abundances in M71.
S-Process in low metallicity Pb stars: comparison between new theoretical results and spectroscopic observations Sara Bisterzo (1) Roberto Gallino (1),
Evidence for Explosive Nucleosynthesis in the Helium Shell of Massive Stars from Cosmochemical Samples Bradley S. Meyer Clemson University.
The massive zero metal stars: their evolutionary properties and their explosive yields. Alessandro Chieffi Istituto Nazionale di AstroFisica (Istituto.
Outline  Introduction  The Life Cycles of Stars  The Creation of Elements  A History of the Milky Way  Nucleosynthesis since the Beginning of Time.
AGB stars Inma Dominguez Sergio Cristallo Oscar Straniero.
New Constraints on Neutron- Capture Nucleosynthesis Processes Inese I. Ivans California Institute of Technology Hubble Fellows Symposium April 7, 2005.
E.Chiaveri on behalf of the n_TOF Collaboration n_TOF Collaboration/Collaboration Board Lisbon, 13/15 December 2011 Proposal for Experimental Area 2(EAR-2)
APN 4, La Palma, June 2007 VG # 1 Optical spectroscopy of Post-AGB stars Pedro García-Lario European Space Astronomy Centre ESA,Villafranca del Castillo,
NGC 2419 – the most bizarre Galactic globular cluster Judith Cohen (Caltech) & Evan Kirby (UC Irvine/Caltech) Conference: Small Stellar Systems, Tuscany,
“ Analysis and interpretation of stellar spectra and nucleosynthesis processes in evolved stars ” D. A. García-Hernández (IAC Support Astronomer) Instituto.
Presolar grains and AGB stars Maria Lugaro Sterrenkundig Instituut University of Utrecht.
Chapter 16 – Chemical Analysis Review of curves of growth –The linear part: The width is set by the thermal width Eqw is proportional to abundance –The.
Eugenio Carretta INAF- Osservatorio Astronomico di Padova L’anticorrelazione Na-O: sonda per la formazione e la prima evoluzione degli ammassi globulari?
THE FIRST STARS: THE FIRST STARS: Uranium-rich metal-poor star Uranium-rich metal-poor star CS CS
HST Observations of Low Z Stars HST Symposium, Baltimore May 3, 2004 Collaborators: Tim Beers, John Cowan, Francesca Primas, Chris Sneden Jim Truran.
Study of the s-process in low mass stars of Galactic disc metallicity
Descriptive Inorganic Chemistry Chem M, W, F Bill Vining 61 Bacon Hall
Yields from single AGB stars Amanda Karakas Research School of Astronomy & Astrophysics Mt Stromlo Observatory.
Nucleosynthesis and formation of the elements. Cosmic abundance of the elements Mass number.
LMS & IMS: their evolution, nucleosynthesis and dusty end S. Cristallo in collaboration with Oscar Straniero and Luciano Piersanti Osservatorio Astronomico.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
CERN-INTC /INTC-P-415 Tackling the s-process stellar neutron density via the 147 Pm(n,  ) reaction Spokespersons: C. Guerrero (U. Sevilla) and.
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio, Oct 2003 Abundances in M92.
The Abundances of Light Neutron- Capture Elements in Planetary Nebulae Nick Sterling NASA Goddard Space Flight Center June 19, 2007 Collaborators: Harriet.
On the Nature of the Thermal Pulses on the Asymptotic Giant Branch Alessandro Chieffi Istituto Nazionale di AstroFisica (Istituto di Astrofisica Spaziale.
The Cecilia Payne-Gaposchkin Lecture Center for Astrophysics May 9, 2002.
SBF with HST Previous ACS & Future WFC3 measurements Michele Cantiello INAF Osservatorio Astronomico di Teramo –Gabriella Raimondo –Enzo Brocato –Ilaria.
O. Straniero, L. Piersanti (Osservatorio di Teramo, INAF) R. Gallino (Universita’ di Torino) I. Dominguez (Univerdad de Granada) Light and heavy elements.
Lower Limit to Stellar Masses >/= 0.08 Msun Substellar objects – Brown Dwarfs.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
2 nd SPES Workshop Probing the Island of Stability with SPES beams.
The origin of the elements heavier than iron
Topics in Astronomical Spectroscopy : Evolution of Chemical Abundances based on the High Resolution Stellar Spectroscopy 2010, 1 학기 대학원 이상각 19 동
The Adventures of a Thermally Pulsating AGB Star
Chemical enrichment mechanisms in Omega Centauri:
Descriptive Inorganic Chemistry Chem 241
R-PROCESS SIGNATURES IN METAL-POOR STARS
the s process: messages from stellar He burning
The neutron capture cross section of the s-process branch point 63Ni
p-process in SNIa: new perspectives R. Gallino C. Travaglio
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Descriptive Inorganic Chemistry Chem 241
Mysterious Abundances in Metal-poor Stars & The ν-p process
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
New Trends of Physics 2005, Hokkaido University, March 1
Chapter 16 – Chemical Analysis
Chemistry – Nov 20, 2018 P3 Challenge- Objective –
Nucleosynthesis in Early Massive Stars: Origin of Heavy Elements
“I always wanted to be somebody, but I should have been more specific
Presentation transcript:

The s-process in low metallicity stars Roberto Gallino (1) Sara Bisterzo (1) Oscar Straniero (2) I. I. Ivans (3, 4) F. Kaeppeler (5) (1) Dipartimento di Fisica Generale, Università di Torino, Torino ( Italy) (2) Osservatorio Astronomico di Collurania – Teramo, (3) The Observatories of the Carnegie Institution of Washington, Pasadena, CA, (USA) (4) Princeton University Observatory, Princeton, NJ (USA) (5)Forschungszentrum Karlsruhe, Institut fuer Kernphysik, Karlsruhe (Germany) Winter School on Nuclear Astrophysics, Hirschegg January , 2006

The s-process is characterized by a generally smooth curve sigma(A)Ns(A) versus atomic mass number A, but interrupted by steep decreases in correspondence of magic neutron numbers N = 50, 82 or 126, where the neutron capture cross sections are very small and the resulting s-process abundances are large. This happens at the first s-peak at Sr, Y, Zr, at the second s-peak at Ba, La, Ce, Pr, Nd and eventually at the termination of the s-process involving Pb-208 (and Bi).

Three s-process components were anticipated by the classical analysis (Clayton and Rassbach 1974; Kaeppeler et al. 1982): the weak, the main, and the strong s-component. The main s-component is the outcome of many generations of Asymptotic Giant Branch stars (AGB) polluting the interstellar medium before the solar system formed. Actually, the main s-component is far from being a unique process, depending on the efficiency of the so-called C13-pocket, the initial mass, and metallicity.

Reproduction of the Solar Main Component (Gallino et al. 1998) 13 C-pocket choice: artificially introduced ad hoc modulated constant Pulse by Pulse AND METALLICITY [Fe/H] = -0.3

[ls/Fe] vs [Fe/H] ls =(Y, Zr) envelope last pulse condition

[hs/Fe] vs [Fe/H] hs =(Ba, La, Nd, Sm) envelope last pulse condition

[Pb/Fe] vs [Fe/H] envelope last pulse condition

[hs/ls] vs [Fe/H] First intrinsic indicator envelope last pulse condition

Second intrinsic indicator [Pb/hs] vs [Fe/H] envelope last pulse condition

Today, the typical mass of an intrinsic AGB HALO STAR is ~ 0.6 M sun (initial mass 0.8 – 0.9 Msun): NO TDU  No C or s-process enrichment observable. A. Intrinsic Halo AGBs B. Extrinsic Halo AGBs (Dwarfs - Giants) P ~ 2-3 yr (13 Gyr ago)

The s elements enhancement in low-metallicity stars interpreted by mass transfer in binary systems (extrinsic AGBs). For extrinsic AGBs [Zr/Nb] ~ 0. Instead, for intrinsic AGBs [Zr/Nb] ~ – 1. Zr over Nb: Intrinsic or Extrinsic AGBs Fig. 2 s-process path

Choice of initial abundances

UPDATED

Light elements C N O F Ne Na Mg Al