Study of the s-process in low mass stars of Galactic disc metallicity

Slides:



Advertisements
Similar presentations
Alessandro Chieffi (Istituto di Astrofisica Spaziale e Fisica Cosmica & INAF)
Advertisements

The origin of heavy elements in the solar system
Stellar Evolution: The Deaths of Stars Chapter Twenty-Two.
Asymptotic Giant Branch. Learning outcomes Evolution and internal structure of low mass stars from the core He burning phase to the tip of the AGB Nucleosynthesis.
Chemical evolution of Super-AGB stars The Giant Branches Lorentz Center, May 2009 Enrique García-Berro 1,2 1 Universitat Politècnica de Catalunya 2 Institut.
S-Process in C-Rich EMPS: predictions versus observations Sara Bisterzo (1) Roberto Gallino (1) Oscar Straniero (2) I. I. Ivans (3, 4) and Wako Aoki, Sean.
Branchings, neutron sources and poisons: evidence for stellar nucleosynthesis Maria Lugaro Astronomical Institute University of Utrecht (NL)
The Big Bang Event that occurred approximately 13.7 BILLION years ago All the mass and energy concentrated at a point The universe began expanding and.
GEOL3045: Planetary Geology Lysa Chizmadia 11 Jan 2007 The Big Bang & Nucleosynthesis Lysa Chizmadia 11 Jan 2007 The Big Bang & Nucleosynthesis.
AGB star intershell abundances inferred from analyses of extremely hot H-deficient post-AGB stars Klaus Werner Institut für Astronomie und Astrophysik.
Astrophysical Reaction Rate for the Neutron-Generator Reaction 13 C(α,n) in Asymptotic Giant Branch Stars Eric Johnson Department of Physics Florida State.
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 16 – Evolution of core after S-C instability Formation of red giant Evolution up.
The s-process Fe Co Ni Rb Ga Ge Zn Cu Se Br As Zr Y Sr Kr (n,  ) ()() ()() r-process p-process 63 Ni, t 1/2 =100 a 64 Cu, t 1/2 =12 h, 40 % (
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 17 – AGB evolution: … MS mass > 8 solar masses … explosive nucleosynthesis … MS.
S-Process in low metallicity Pb stars: comparison between new theoretical results and spectroscopic observations Sara Bisterzo (1) Roberto Gallino (1),
Institute for Astronomy and Astrophysics, University of Tübingen, Germany July 5, 2004Cool Stars, Stellar Systems and the Sun (Hamburg, Germany)1 Turning.
53° CONGRESSO SAIT PISA, MAGGIO 2009 SN 2008ha and SN 2008S: is there a role for the super-asymptotic giant branch stars? M.L. Pumo INAF - Osservatorio.
Outline  Introduction  The Life Cycles of Stars  The Creation of Elements  A History of the Milky Way  Nucleosynthesis since the Beginning of Time.
AGB stars Inma Dominguez Sergio Cristallo Oscar Straniero.
Origin of the elements and Standard Abundance Distribution Clementina Sasso Lotfi Yelles Chaouche Lecture on the Origins of the Solar Systems.
New Constraints on Neutron- Capture Nucleosynthesis Processes Inese I. Ivans California Institute of Technology Hubble Fellows Symposium April 7, 2005.
APN 4, La Palma, June 2007 VG # 1 Optical spectroscopy of Post-AGB stars Pedro García-Lario European Space Astronomy Centre ESA,Villafranca del Castillo,
Kepler Center for Astro and Particle Physics, University of Tübingen Mar 30, 2009Recent Directions in Astrophysical Quantitative Spectroscopy and Radiation.
Stellar Evolution in general and in Special Effects: Core Collapse, C-Deflagration, Dredge-up Episodes Cesare Chiosi Department of Astronomy University.
“ Analysis and interpretation of stellar spectra and nucleosynthesis processes in evolved stars ” D. A. García-Hernández (IAC Support Astronomer) Instituto.
Presolar grains and AGB stars Maria Lugaro Sterrenkundig Instituut University of Utrecht.
Stellar Fuel, Nuclear Energy and Elements How do stars shine? E = mc 2 How did matter come into being? Big bang  stellar nucleosynthesis How did different.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Abundance patterns of r-process enhanced metal-poor stars Satoshi Honda 1, Wako Aoki 2, Norbert Christlieb 3, Timothy C. Beers 4, Michael W.Hannawald 2.
Lecture 17 Post-ms evolution II. Review Review Review.
14 N/ 15 N ratios in AGB C-stars and the origin of SiC grains Eurogenesis- Perugia Workshop, Nov 12-14, 2012 C. Abia R. Hedrosa (Granada) B. Plez (Montpellier)
Prelim Review.
Element abundances of bare planetary nebula central stars and the shell burning in AGB stars Klaus Werner Institut für Astronomie und Astrophysik Universität.
HST Observations of Low Z Stars HST Symposium, Baltimore May 3, 2004 Collaborators: Tim Beers, John Cowan, Francesca Primas, Chris Sneden Jim Truran.
The s-process in low metallicity stars Roberto Gallino (1) Sara Bisterzo (1) Oscar Straniero (2) I. I. Ivans (3, 4) F. Kaeppeler (5) (1) Dipartimento di.
Descriptive Inorganic Chemistry Chem M, W, F Bill Vining 61 Bacon Hall
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
Yields from single AGB stars Amanda Karakas Research School of Astronomy & Astrophysics Mt Stromlo Observatory.
The Red Giant Branch. L shell drives expansion L shell driven by M core - as |  |, |  T| increase outside contracting core shell narrows, also L core.
LMS & IMS: their evolution, nucleosynthesis and dusty end S. Cristallo in collaboration with Oscar Straniero and Luciano Piersanti Osservatorio Astronomico.
The composition of presolar spinel grain OC2: constraining AGB models Maria Lugaro University of Utrecht, The Netherlands Amanda I. Karakas McMaster University,
Lecture 10 Nucleosynthesis During Helium Burning and the s-Process.
1 AGB - Asymptotic Giant Branch wykład II Ryszard Szczerba Centrum Astronomiczne im. M. Kopernika, Toruń (56) ext. 27.
W. Udo Schröder, 2007 Applications Applications of Nuclear Instruments and Methods 1.
9. Evolution of Massive Stars: Supernovae. Evolution up to supernovae: the nuclear burning sequence; the iron catastrophe. Supernovae: photodisintigration;
Two types of supernovae
6 - Stellar Evolution-I. The life history of a star is determined by its mass…..
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
Selected Topics in Astrophysics
18-19 Settembre 2006 Dottorato in Astronomia Università di Bologna.
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
Lecture 16 Post-ms evolution. Overview: evolution.
The Abundances of Light Neutron- Capture Elements in Planetary Nebulae Nick Sterling NASA Goddard Space Flight Center June 19, 2007 Collaborators: Harriet.
“Why are massive O-rich AGB stars in our Galaxy not S-stars?” D. A. García-Hernández (IDC-ESAC, Madrid, Spain) In collaboration with P. García-Lario (IDC-ESAC),
Institute for Astronomy and Astrophysics, University of Tübingen, Germany June 29, 2005Planetary Nebulae as Astronomical Tools, Gdansk, Poland1 Light and.
The Cecilia Payne-Gaposchkin Lecture Center for Astrophysics May 9, 2002.
O. Straniero, L. Piersanti (Osservatorio di Teramo, INAF) R. Gallino (Universita’ di Torino) I. Dominguez (Univerdad de Granada) Light and heavy elements.
ASTR730 / CSI661 Fall 2012 CH2. An Overview of Stellar Evolution September 04, 2012 Jie Zhang Copyright ©
Review Quiz No. 16 :60 1.A0 2.B2 3.F5 4.K2 5.G2 Question 1: Stars of which of the following spectral types have the shortest main- sequence life time?
The origin of the elements heavier than iron
CSI661/ASTR530 Spring, 2011 Chap. 2 An Overview of Stellar Evolution Feb. 23, 2011 Jie Zhang Copyright ©
Topics in Astronomical Spectroscopy : Evolution of Chemical Abundances based on the High Resolution Stellar Spectroscopy 2010, 1 학기 대학원 이상각 19 동
From last class High mass stars have much hotter cores than low mass stars and get to fuse beyond Helium Carbon → O,Ne,Mg (600 million K) Neon → O, Mg.
The Adventures of a Thermally Pulsating AGB Star
Stellar Evolution Pressure vs. Gravity.
Star Formation Nucleosynthesis in Stars
Mysterious Abundances in Metal-poor Stars & The ν-p process
New Trends of Physics 2005, Hokkaido University, March 1
Stellar Evolution.
Nucleosynthesis in Early Massive Stars: Origin of Heavy Elements
Presentation transcript:

Study of the s-process in low mass stars of Galactic disc metallicity Laura Husti Roberto Gallino Sara Bisterzo

Outline: Origin of the heavy elements. Stellar Nucleosynthesis and Evolution. S-process nucleosynthesis in AGB stars at solar metallicity. Comparison with spectroscopic data of intrinsic and extrinsic AGBs

Where are the elements made? We want to address these issues using samples from the types of stars where nucleosynthesis occurs

Formation of Heavy Elements Thermonuclear reactions A<56 Neutron captures - slow (s-process) 105-1011 free neutrons/cm3 - rapid (r-process) 1022-1025 free neutrons/cm3

s-process

Stellar evolution of low mass stars Core H burning Core H exhaustion and contraction of the star H-shell ignition → core contraction + envelope expansion First dredge-up Core He burning Core He exhaustion; contraction of the C-O core Degenerate C-O core + alternate burning H and He shells + He intershell + extended convective envelope

Nucleosynthesis in AGB Stars Neutron sources: radiative 13C(α,n)16O convective 22Ne(α,n)25Mg 22Ne formation: 14 N(α,γ)18F(β+,ν)18O(α,γ) 22Ne 13C formation: 12C(p, γ) 13 N(β+,ν) 13C(p, γ) 14 N Busso, Gallino &Wasserburg ARA&A 1999

Variuos 13C pocket efficiencies, same metallicity hs(Ba, La, Cs, Nd,Sm) ls(Sr, Y, Zr) Pb

IRAS 0713+1005

Extrinsic AGBs 2 1

HD 123585 Allen & Barbuy 2006

Conclusions comparison between theoretical models and spectroscopic observations for the element abundances of 30 barium stars and 12 post-AGB stars models succesfully reproduce the observational data