CP violation in the neutrino sector Lecture 3: Matter effects in neutrino oscillations, extrinsic CP violation Walter Winter Nikhef, Amsterdam, 06.03.2014.

Slides:



Advertisements
Similar presentations
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy ICTP, December 11, 2012.
Advertisements

Teppei Katori, Indiana University1 PRD74(2006) Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,
Neutrino oscillations/mixing
The effect of turbulence upon supernova neutrinos Jim Kneller NC State University NOW 2010.
Perspectives for neutrino oscillations.
Leptonic CP Violation in Neutrino Oscillations Shun Zhou KTH Royal Institute of Technology, Stockholm in collaboration with T. Ohlsson & H. Zhang Phys.
Neutrino Flavor ratio on Earth and at Astrophysical sources K.-C. Lai, G.-L. Lin, and T. C. Liu, National Chiao Tung university Taiwan INTERNATIONAL SCHOOL.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
1 Neutrino Phenomenology Boris Kayser Scottish Summer School August 9,
Sinergia strategy meeting of Swiss neutrino groups Mark A. Rayner – Université de Genève 10 th July 2014, Bern Hyper-Kamiokande 1 – 2 km detector Hyper-Kamiokande.
CP-phase dependence of neutrino oscillation probability in matter 梅 (ume) 田 (da) 義 (yoshi) 章 (aki) with Lin Guey-Lin ( 林 貴林 ) National Chiao-Tung University.
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
November 19, 2005 Sergio Palomares-Ruiz Physics of Atmospheric Neutrinos: Perspectives for the Future Topical Workshop on Physics at Henderson DUSEL Fort.
Phenomenology of  13  13 half-day meeting Oxford, UK September 24, 2007 Walter Winter Universität Würzburg.
CP violation and mass hierarchy searches Neutrinos in particle physics and astrophysics (lecture) June 2009 Walter Winter Universität Würzburg TexPoint.
Neutrino Oscillations Or how we know most of what we know.
Neutrino Physics - Lecture 3 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” Walter Winter Universität.
Neutrino oscillations: Perspective of long-baseline experiments 522. Wilhelm and Else Heraeus-Seminar: Exploring the neutrino sky and fundamental particle.
Atmospheric Neutrinos
TeVPA 2012 TIFR Mumbai, India Dec 10-14, 2012 Walter Winter Universität Würzburg Neutrino physics with IceCube DeepCore-PINGU … and comparison with alternatives.
Summary of WG1 – Phenomenological issues Osamu Yasuda (TMU)
Recent Results from Super-Kamiokande and Sudbury Neutrino Observatory R. D. McKeown California Institute of Technology January 17, 2004 IHEP Beijing.
PINGU – An IceCube extension for low-energy neutrinos Uli Katz on behalf of the PINGU Collaboration European Strategy for Neutrino Oscillation.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Neutrino oscillation physics II Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
Resolving neutrino parameter degeneracy 3rd International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam Sep. 30 and Oct , Univ.
Physics with a very long neutrino factory baseline IDS Meeting CERN March 30, 2007 Walter Winter Universität Würzburg.
Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” Walter Winter Universität.
Neutrino Oscillation Nguyen Thanh Phong Yonsei Univ., May 19, 2008.
A neutrino beam to IceCube/PINGU? (PINGU = “Precision IceCube Next-Generation Upgrade“) NPAC (Nuclear/Particle/Astro/Cosmo) Forum UW-Madison, USA May 15,
Beta beam scenarios … for neutrino oscillation physics Beta beam meeting Aachen, Germany October 31-November 1, 2007 Walter Winter Universität Würzburg.
Geographical issues and physics applications of “very long” neutrino factory baselines NuFact 05 June 23, 2005 Walter Winter Institute for Advanced Study,
The NOvA Experiment Ji Liu On behalf of the NOvA collaboration College of William and Mary APS April Meeting April 1, 2012.
Neutrino Oscillations in vacuum Student Seminar on Subatomic Physics Fundamentals of Neutrino Physics Dennis Visser
Studies on PINGU’s Sensitivity to the Neutrino mass Hierarchy P. Berghaus, H.P. Bretz, A. Groß, A. Kappes, J. Leute, S. Odrowski, E. Resconi, R. Shanidze.
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia E. Akhmedov, M. Maltoni,
Impact of large  13 on long- baseline measurements at PINGU PINGU Workshop Erlangen university May 5, 2012 Walter Winter Universität Würzburg TexPoint.
Neutrino Oscillation Measurements with IceCube and PINGU
Neutrino oscillation physics Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
Neutrino factory physics reach … and impact of detector performance 2 nd ISS Meeting KEK, Tsukuba, Japan January 24, 2006 Walter Winter Institute for Advanced.
Optimization of a neutrino factory oscillation experiment 3 rd ISS Meeting Rutherford Appleton Laboratory, UK April 25-27, 2006 Walter Winter Institute.
S.P.Mikheyev INR RAS1 ``Mesonium and antimesonium’’ Zh. Eksp.Teor. Fiz. 33, 549 (1957) [Sov. Phys. JETP 6, 429 (1957)] translation B. Pontecorvo.
S.P.Mikheyev (INR RAS) S.P.Mikheyev (INR RAS)2  Introduction.  Vacuum oscillations.  Oscillations in matter.  Adiabatic conversion.  Graphical.
Optimization of a neutrino factory for non-standard neutrino interactions IDS plenary meeting RAL, United Kingdom January 16-17, 2008 Walter Winter Universität.
The quest for  13 : Parameter space and performance indicators Proton Driver General Meeting At Fermilab April 27, 2005 Walter Winter Institute for Advanced.
1 Luca Stanco, INFN-Padova (for the OPERA collaboration) Search for sterile neutrinos at Long-BL The present scenario and the “sterile” issue at 1 eV mass.
Physics potential of “very long” neutrino factory baselines Seminar in Mathematical Physics At KTH Stockholm April 13, 2005 Walter Winter Institute for.
Matter Effects on Neutrino Oscillations By G.-L. Lin NCTU Nov. 20, 04 AS.
Basudeb Dasgupta, JIGSAW 2007 Mumbai Phase Effects in Neutrinos Conversions at a Supernova Shockwave Basudeb Dasgupta TIFR, Mumbai Joint Indo-German School.
Low energy option for KM3NeT Phase 1? KM3NeT-ORCA (Oscillation Research with Cosmics in the Abyss) P. Coyle, Erlangen 23 June 2012.
Systematics at the Neutrino Factory … and the global context NuInt 2012 Rio de Janeiro, Brazil Oct , 2012 Walter Winter Universität Würzburg TexPoint.
Neutrino Physics Now and in Near Future Hisakazu Minakata U. Sao Paulo.
Pontecorvo’s idea An introductory course on neutrino physics (IV)
Enhancement of CP Violating terms
Atmospheric neutrino oscillations for Earth Tomography
Institute for Advanced Study, Princeton
September 24, 2007 Walter Winter
SOLAR ATMOSPHERE NEUTRINOS
Understanding Earth Matter Effect in Neutrino Oscillation
Measurement of the Neutrino Mass hierarchy in the deep sea
KM3NeT Collaboration meeting, Marseille, January 2013
Non-Standard Interactions and Neutrino Oscillations in Core-Collapse Supernovae Brandon Shapiro.
SOLAR ATMOSPHERE NEUTRINOS
Parameter Degeneracy in Neutrino Oscillations (and how to solve it?)
T2KK sensitivity as a function of L and Dm2
T2KK Sensitivity of Resolving q23 Octant Degeneracy
Neutrino oscillation physics
Future neutrino experiments
Finish neutrino Physics
Presentation transcript:

CP violation in the neutrino sector Lecture 3: Matter effects in neutrino oscillations, extrinsic CP violation Walter Winter Nikhef, Amsterdam,

Walter Winter | CPV Amsterdam | | Page 2 Contents (overall) > Lecture 1: Introduction to neutrino physics, sources of CP violation > Lecture 2: Neutrino oscillations in vacuum, measurement of  CP > Lecture 3: Matter effects in neutrino oscillations: “extrinsic CP violation” > Lecture 4: New sources of CP violation? References: > WW: “ Lectures on neutrino phenomenology “, Nucl. Phys. Proc. Suppl (2010) > Giunti, Kim: “ Fundamentals of neutrino physics and astrophysics “, Oxford, 2007

Walter Winter | CPV Amsterdam | | Page 3 Contents (lecture 3) > Matter effects in CP violation … and measurement of the mass hierarchy > Extrinsic CP violation > Neutrino oscillations in varying densities. Example: Sun > Summary

Walter Winter | CPV Amsterdam | | Page 4 Matter effects in neutrino oscillations … and measurement of the neutrino mass hierarchy

Walter Winter | CPV Amsterdam | | Page 5 Matter effect (MSW) > Ordinary matter: electrons, but no ,  > Coherent forward scattering in matter: Net effect on electron flavor > Hamiltonian in matter (matrix form, flavor space): Y: electron fraction ~ 0.5 (electrons per nucleon) (Wolfenstein, 1978; Mikheyev, Smirnov, 1985)

Walter Winter | CPV Amsterdam | | Page 6 Matter profile of the Earth … as seen by a neutrino (PREM: Preliminary Reference Earth Model) Core Inner core

Walter Winter | CPV Amsterdam | | Page 7 Parameter mapping … for two flavors, constant matter density > Oscillation probabilities in vacuum: matter: For  appearance,  m 31 2 : -  ~ 4.7 g/cm 3 (Earth’s mantle): E res ~ 6.4 GeV -  ~ 10.8 g/cm 3 (Earth’s outer core): E res ~ 2.8 GeV Resonance energy (from ):  MH (Wolfenstein, 1978; Mikheyev, Smirnov, 1985) L=11810 km

Walter Winter | CPV Amsterdam | | Page 8 Application: Mass hierarchy measurement > Matter resonance for > Will be used in the future to determine the mass ordering: 8 8 Normal  m 31 2 >0 Inverted  m 31 2 <0 NormalInverted NeutrinosResonanceSuppression AntineutrinosSuppressionResonance Neutrinos/Antineutrinos

Walter Winter | CPV Amsterdam | | Page 9 Mantle-core-mantle profile > Probability for L=11810 km (Parametric enhancement: Akhmedov, 1998; Akhmedov, Lipari, Smirnov, 1998; Petcov, 1998) Core resonance energy Mantle resonance energy Threshold effects expected at: 2 GeV 4-5 GeV Naive L/E scaling does not apply! Oscillation length ~ mantle-core-mantle structure Parametric enhancement. ! Best-fit values from arXiv:

Walter Winter | CPV Amsterdam | | Page 10 Emerging technologies: PINGU > Fill in IceCube/DeepCore array with additional strings  Lower threshold  Particle physics!? > PINGU (“Precision IceCube Next Generation Upgrade“): > 40 additional strings, 60 optical modules each > Modest cost, US part ~ M$, foreign ~ 25 M$ (including contingency) > Completion 2019/2020? > Similar idea in Mediterranean: ORCA (PINGU LOI, arXiv: )

Walter Winter | CPV Amsterdam | | Page 11 Mass hierarchy measurement … PINGU, using atmospheric neutrinos > 3  conceivable after three years of operation > Complementary to beams+reactor (WW, arXiv: , PRD)  tracks only (PINGU LOI, arXiv: )  after 3.5 yr (WW, arXiv: , PRD)

Walter Winter | CPV Amsterdam | | Page 12 Global context > Bands: risk wrt  23 (PINGU, INO),  CP (NOvA, LBNE), energy resolution (JUNO) > LBNE and sensitivity also scales with  23 ! (version from PINGU LOI, arXiv: , based on Blennow, Coloma, Huber, Schwetz, arXiv: ) True NO LBNE 10kt if  23 varied as well  Fig. 9 in arXiv:

Walter Winter | CPV Amsterdam | | Page 13 Extrinsic CP violation

Walter Winter | CPV Amsterdam | | Page 14 Extrinsic CP violation > Matter effects violate CP and even CPT “extrinsically“ > Consequence: Obscure extraction of intrinsic CP violation CP Need an anti-Earth

Walter Winter | CPV Amsterdam | | Page 15 Impact on CP violation measurement > Matter effects mix up CP-conserving and CP-violating solutions CP conservation Matter effects shift “pencils“ (regions for different hierarchies) away  13 (from PRD 70, )

Walter Winter | CPV Amsterdam | | Page 16 Effect on three flavor effects (repeat) (Cervera et al. 2000; Freund, Huber, Lindner, 2000; Akhmedov et al, 2004) > Antineutrinos: > Silver: > Platinum, T-inv.: Ideal

Walter Winter | CPV Amsterdam | | Page 17 Matter effects in varying density profiles Example: Sun

Walter Winter | CPV Amsterdam | | Page 18 Constant vs. varying matter density > For constant matter density: is the Hamiltonian in constant density is the mixing matrix described by > For varying matter density: time-dep. Schrödinger equation (H explicitely time-dependent!) Transition amplitudes;  x : mixture   and  

Walter Winter | CPV Amsterdam | | Page 19 Adiabatic limit > Use transformation: … and insert into time-dep. SE […] > Adiabatic limit:  Matter density varies slowly enough such that differential equation system decouples! Amplitudes of mass eigenstates in matter

Walter Winter | CPV Amsterdam | | Page 20 Propagation in the Sun > Neutrino production as e (fusion) at high n e > Neutrino propagates as mass eigenstate in matter (DE decoupled);  : phase factor from propagation > In the Sun: n e (r) ~ n e (0) exp(-r/r 0 ) (r 0 ~ R sun /10); therefore density drops to zero! > Detection as electron flavor: Disappearance of solar neutrinos!

Walter Winter | CPV Amsterdam | | Page 21 Solar oscillations > In practice: A >> 1 only for E >> 1 MeV > For E << 1 MeV: vacuum oscillations Borexino, PRL 108 (2012) Averaged vacuum oscillations: P ee =1-0.5 sin 2 2  Adiabatic MSW limit: P ee =sin 2  ~ 0.3

Walter Winter | CPV Amsterdam | | Page 22 Summary > Electron neutrinos interact with matter by coherent foward scattering > Can be used to measure neutrino mass hierarchy > However: can also obscure the extraction of “intrinsic CP violation“ (Earth matter violates CP and CPT explicitely) > Matter effects in varying matter densities even more subtle; example: adiabatic flavor conversions in the Sun