26 September 2011 Lab this week: Four Endocrine Cases –Bring textbook –Optional: Bring laptop with AirTerrier Test # 1 =Monday, Oct 3 rd. –Test Material.

Slides:



Advertisements
Similar presentations
Outline Neuronal excitability Nature of neuronal electrical signals Convey information over distances Convey information to other cells via synapses Signals.
Advertisements

Outline Neuronal excitability Nature of neuronal electrical signals Convey information over distances Convey information to other cells via synapses Signals.
Membrane Potential 101 R. Low- 08/26/14 DRAFT
Monday April 9, Nervous system and biological electricity II 1. Pre-lecture quiz 2. A review of resting potential and Nernst equation 3. Goldman.
Nerves, hormones and homeostasis
Nervous coordination 2 The nerve impulse.
RESTING MEMBRANE POTENTIAL
Resting Membrane Potential. Cell Membranes F5-1 Cell membrane distinguishes one cell from the next. Cell membranes do the following: a) Regulates exchange.
PHYSIOLOGY 1 Lecture 11 Membrane Potentials. n Objectives: Student should know –1. The basic principals of electricity –2. Membrane channels –3. Electrical-chemical.
1QQ#11 for 10:30 1.Retrograde axonal transport limits the rate of axonal regeneration to 1-2 mm/day. 2.The cell body of an afferent neuron is located in.
Bioelectricity Provides basis for “irritability” or “excitability Fundamental property of all living cells Related to minute differences in the electrical.
MEMBRANE POTENTIAL Prepared by Dr.Mohammed Sharique Ahmed Quadri Assistant prof. Physiology Al Maarefa College.
Resting potentials, equilibrium potential, and action potentials Mr. Strapps says “I put the “rest” in resting potential.”
Neurophysiology Opposite electrical charges attract each other
C. Establishes an equilibrium potential for a particular ion
Chapter 3 The Neuronal Membrane at Rest.
Resting membrane potential 1 mV= V membrane separates intra- and extracellular compartments inside negative (-80 to -60 mV) due to the asymmetrical.
Neurophysiology Opposite electrical charges attract each other In case negative and positive charges are separated from each other, their coming together.
General Organization - CNS and PNS - PNS subgroups The basic units- the cells - Neurons - Glial cells Neurophysiology - Resting, graded and action potentials.
Ion Pumps and Ion Channels CHAPTER 48 SECTION 2. Overview  All cells have membrane potential across their plasma membrane  Membrane potential is the.
Neural Signaling: The Membrane Potential Lesson 9.
RESTING MEMBRANE POTENTIAL
The central nervous system consists of ______.
Transmission of Nerve Impulses WALT Neurones transmit impulses as a series of electrical signals A neurone has a resting potential of – 70 mV Depolarisation.
Week 2 Membrane Potential and Nernst Equation. Key points for resting membrane potential Ion concentration across the membrane E ion : Equilibrium potential.
Learning Objectives Organization of the Nervous System Electrical Signaling Chemical Signaling Networks of Neurons that Convey Sensation Networks for Emotions.
Membrane Potentials All cell membranes are electrically polarized –Unequal distribution of charges –Membrane potential (mV) = difference in charge across.
Agenda Membrane potentials – what they are Formation of membrane potentials Types and uses of membrane potentials The significance of membrane potentials.
MEMBRANE POTENTIAL DR. ZAHOOR ALI SHAIKH Lecture
NERVOUS TISSUE Chapter 44. What Cells Are Unique to the Nervous System? Nervous systems have two categories of cells: Neurons generate and propagate electrical.
Membrane Potential 6 / 5 /10. The cell membranes of all body cells in the resting condition are, polarized which means that they show an electrical potential.
Transmission 1. innervation - cell body as integrator 2. action potentials (impulses) - axon hillock 3. myelin sheath.
 Consists of circuits of neurons and supporting cells › A Neuron is a nerve cell; the fundamental unit of the nervous system, having structure and properties.
DIFFUSION POTENTIAL, RESTING MEMBRANE POTENTIAL, AND ACTION POTENTIAL
Resting Membrane Potential (Voltage) Dr.Mohammed Alotaibi MRes, PhD (Liverpool, England) Department of Physiology College of Medicine King Saud University.
Resting Membrane Potential. Membrane Potentials  Electrical signals are the basis for processing information and neuronal response  The impulses are.
1QQ # 7: Answer one. 1.For A-D list the four types of Glial Cells of the CNS and their functions: A) B) C) D). E) Which type of neuron has its cell body.
24 September 2008 Pick up endocrine quiz from piano MC section counted 80% (avg missed 5.6, 82 ± 12) Trophic + Permissive effect counted 20% Overall Quiz.
Major communication systems coordinate parts of animals body 1.Neuronal system: Rapid & Short Burst 2.Endocrine system: Slow & Persistent The Physical.
Electrical and concentration gradient driving forces for Sodium and Potassium How does the membrane potential change if 1) permeability to sodium increases.
How Neurons Generate Signals The Neuron at Rest. Stepping on a Thumbtack  Reflexive withdrawal of the foot – a simple behavior controlled by a circuit.
Unit 1 Opener neuro4e-unit-01-opener.jpg.
Resting Membrane Potential (Voltage) Dr.Mohammed Alotaibi MRes, PhD (Liverpool, England) Department of Physiology College of Medicine King Saud University.
29 September Today –Neurons –Axonal transport –Resting Membrane potential Next class –Action potentials –Conduction of action potentials Lab next week:
28 Sept Announcements Pick up answer sheet for Quiz 2 from front Friday absentees: pick up Quiz 1 & Andro Paper from Piano Read & bring Androstenedione.
Electrophysiology 1.
Membrane potential  Potential difference (voltage) across the cell membrane.  In all cells of the body (excitable and non- excitable).  Caused by ion.
Bioelectrical phenomena in nervous cells. Measurement of the membrane potential of the nerve fiber using a microelectrode membrane potential membrane.
Learning Objectives Students should be able to: Define resting membrane potential and how it is generated. Relate Nernst Equilibrium potential for sodium,
1 October 2010 Test # 1 Monday See Test 1 Study topics on website See supplemental powerpoint on EPI and NE posted to powerpoint folder. Today in class.
1 a, b, c, d all move solutes by diffusion down concentration gradient.
Membrane potentials XIA Qiang, MD & PhD Department of Physiology Room 518, Block C, Research Building School of Medicine, Zijingang Campus
Objectives Basics of electrophysiology 1. Know the meaning of Ohm’s Law 2. Know the meaning of ionic current 3. Know the basic electrophysiology terms.
Structure of a nerve Nerves and Nerve impulses “Nerve impulse: a self-propagating wave of electrical disturbance which travels along the surface of a.
PHYSIOLOGY OF THE NERVOUS SYSTEM Neurons are IRRITABLE Ability to respond to a stimulus! (What’s a stimulus?)
The Action Potential. Four Signals Within the Neuron  Input signal – occurs at sensor or at points where dendrites are touched by other neurons.  Integration.
Principles of Bioelectricity. Key Concepts The cell membrane is composed of a phospholipid bilayer The cell membrane may have transport channels (made.
LECTURE TARGETS Concept of membrane potential. Resting membrane potential. Contribution of sodium potassium pump in the development of membrane potential.
Membrane Potential -2 10/5/10. Cells have a membrane potential, a slightly excess of negative charges lined up along the inside of the membrane and a.
Chapter 44 Lecture 15 Neurons and Nervous System Dr. Alan McElligott.
Definition of terms Potential : The voltage difference between two points. Membrane Potential :The voltage difference between inside and outside of the.
RESTING MEMBRANE POTENTIAL
Resting Membrane Potential (RMP)
RESTING MEMBRANE POTENTIAL ACTION POTENTIAL WEEK 4
24 September 2008 Pick up endocrine quiz from piano
30 September 2008 Pick up endocrine quiz from table. Grade in pencil near question # 11. Grades on Quiz 2: 81 (Mean) ± 15 (standard deviation) Max.
Neurons, Synapses, and Signaling
24 September 2008 Pick up endocrine quiz from piano
Action potential and synaptic transmission
Changes in electrical gradients
Presentation transcript:

26 September 2011 Lab this week: Four Endocrine Cases –Bring textbook –Optional: Bring laptop with AirTerrier Test # 1 =Monday, Oct 3 rd. –Test Material Cutoff to be announced Friday. Lab next week: Measuring action potential conduction velocity in human ulnar nerve.

1QQ # 9 for 8:30 class 1.A) List the four categories of glia cells of the central nervous system and B) state which category you would choose to eliminate from your CNS if you were forced to do so, being sure to C) give your reasons for your selection. 2.A) Describe the location and purpose of a growth cone and B) how axonal transport is associated with growth cones.

1QQ # 9 for 9:30 class 1.A) List the four categories of glia cells of the central nervous system and B) state which category you would choose to eliminate from your CNS if you were forced to do so, being sure to C) give your reasons for your selection. 2.A) Describe the location and purpose of a growth cone and B) how axonal transport is associated with growth cones.

Virtues of Squid Giant Axon Big questions: 1)How do cells generate a resting membrane potential? 2)What causes changes in the membrane potential? 3)How do cells use these potentials? i.e. What is their purpose?

Fig

Fig a There is a concentration gradient favoring the diffusion of Na+ and K+ through the selectively permeable membrane which has ion channels only for potassium. At the start, is there an electrical driving force?

Fig b With K+ channels open, K+ diffuses down its concentraiton gradient, leaving behind CL- ions which are not permeable through the membrane. As more and more K+ move to the left, the compartment they leave becomes more and more negatively charged. Is there an electrical driving force?

Fig c

Fig d Soon, the accumulation of negative charges seriously impeded the diffusion of K+ as the electrostatic force builds up in opposition to the concentration driving force.

Fig e Equilibrium potential = Nernst potential = diffusion potential Eventually, the electrostatic force that impedes diffusion of K+ is exactly equal to the driving force favoring diffusion based on a concentration gradient. When these two driving forces are equal and opposite, the membrane potential reaches an equilibrium at which the voltage is called So which compartment corresponds to intracellular fluid? E ion+ = 61/Z log ([conc outside]/ [conc inside]) E K+ = 61/1 log (5/150) E K+ = -90 mV

The Nernst Equation If the membrane is permeable to ONLY ONE ion species and you know the concentrations on both sides of the membrane, use the Nernst Equation to calculate the membrane potential. Nernst potential for X = 61/Z log [Outside ] / [Inside] S 2

Fig e Equilibrium potential = Nernst potential = diffusion potential E ion+ = 61/Z log ([conc outside]/ [conc inside]) E K+ = 61/1 log (5/150) E K+ = -90 mV 150 mM5 mM K+ 50 mM Predict the change in membrane potential if K+ were added to the extracellular fluid. S 1 What hormone regulates the levels of Na+ and K+ in extracellular fluid?

Fig a S 3 Now consider a situation in which only Na+ is permeable.

Fig b S 4

Fig c S 5

Fig d S 6

Fig e Equilibrium potential for Na+ E Na+ = 61/1 log (145/15) E Na + = +60 mV 145 mM 15 mM Extracellular Intracellular So, given these concentrations of Na+ and a membrane permeable only to Na+, use Nernst equation to calculate what the membrane potential would be. At the equilibrium potential, no net movement of Na+ because driving forces (concentration and electrical) are exactly equal and opposite. S 7

Electrical and concentration gradient driving forces for Sodium and Potassium How does the membrane potential change if 1) permeability to sodium increases 2) Permeability to potassium increases Why is resting membrane potential closer to E K than E Na ? What would happen to membrane potential if suddenly P Na became very great? Size and Direction of Arrows show driving forces! The G-H-K Equation! S 8

The Goldman Hodgkin Katz Equation If you know the concentrations of ALL permeable ions and their relative permeabilities, you can calculate the membrane potential using the GHK Equation. S 9

At RMP, some Na+ leaks in, some K+ leaks out. S 10

Na+ K+ ATPase maintains the concentration gradients across cell membranes Animation of the Pump What would happen to membane potentials and concentrations of Na+ and K+ if cells didn’t have this pump? S 11

Animations of the Origin of Resting Membrane Potential Animation of Resting Membrane Potential (single ion) YouTube animation of Na-K-ATPase, Sodium Co-transporter, and K Leak channels Origin of Resting Membrane Potential and intracellular recording S 12

S 13

Which ion moving in which direction (into or out of cell) is responsible for depolarization and overshoot? Which ion moving in which direction (into or out of cell) is responsible for repolarization and hyperpolarization? Can the membrane potential go more negative than -90 mV? Increase PK+ Increase PNa+ S 14 Increase PK+ How do ions get across the membrane? Ion channels!

Graded potentials are conducted decrementally for only a few millimeters, die out over distance and time, and are proportional to the size of the stimulus. Leak Channels Gated Channels ….. Ligand-gated ….. Mechanically-gated ….. Voltage-gated Electrogenic Sodium- Potassium ATP-ase maintains concentrations across membrane 2K+ 3 Na+ S 15

Open Na+ channels, Na+ goes _____ Open K+ channels, K+ goes _____ S 16

Graded potentials are conducted no more than 2mm Insect bites foot (stimulus). Sensory neuron produces graded potential in proportion to intensity of the stimulus. How is signal conducted to the brain? S 17