Linear spectropolarimetry Jorick Vink (Armagh Observatory)
Linear Spectropolarimetry PART I: massive OB stars Wolf-Rayet stars (WRs) Luminous Blue Variables (LBVs) PART II: pre-main sequence (PMS) Herbig AeBe stars T Tauri stars
Part I (Outline) Massive star evolution Spherical winds? Linear polarimetry WR data LBV data
Evolution of a Massive Star O O LBV WR SN
Radiation-driven wind by Lines dM/dt = f (Z, L, M, Teff) Abbott & Lucy (1985)
Wind momenta at low Z Vink et al. (2001) Mokiem et al. (2007) Models (Vink) Data (Mokiem) VLT FLAMES
WR stars produce Carbon ! Geneva models (Maeder & Meynet 1987)
WR stars produce Carbon ! Geneva models (Maeder & Meynet 1987)
Which element drives WR winds? - C Mdot does not depend on host Z - Fe Mass loss DOES depend on host Z
Z-dependence of WR winds Vink & de Koter (2005, A&A)
Implications of lower WR mass loss: less angular momentum loss Long-duration GRBs favoured at low Z
Are low Z WRs fast rotators? No v sin i Are the winds aspherical? Linear Polarimetry
Polarimetry – asymmetry
No Polarisation
Depolarisation
LMC WR spectropolarimetry VLT/FORS1 (Vink 2007)
LMC WR spectropolarimetry
Statistics Be stars in galaxy: 60% line effects WR stars in galaxy 15-20% WR stars in LMC: 2/13 i.e. 15% (Harries et al. 1998) (Poekert & Marlborough 1976)
Low Z Wolf-Rayet stars LMC WR winds as symmetric as galactic ones LMC winds strong enough to remove angular momentum GRB threshold Z: 40% solar or less
LBV: Eta Car
LBV spectropolarimetry Text (Davies, Oudmaijer & Vink, 2005)
AG Car data Text
Linear polarisation from a disk Q U
Polarisation due to clumps Q U
PART II
Part II: PMS (Outline) Introduction –T Tauri 1 Msun –Herbig Ae 3 Msun –Herbig Be 10 Msun Polarisation data Disc scattering models –inner hole –undisrupted X ray emission
Questions for Star Formation Do all stars form by disk accretion? Is there a fundamental difference between low- and high mass star formation?
Hertzsprung-Russell Diagram OBA F G KM Luminosity T Tauri Herbig AeBe O stars ZAMS
T Tauri stars: Magnetospheric Accretion
Intermediate mass: Herbig stars Magnetic fields? Disks? YES – Sub-mm (Mannings & Sargent 1997) NO – Infrared interferometry (Millan-Gabet et al. 2001)
Polarisation across line? 1. No change 2. Depolarisation 3. LINE Polarisation
No Polarisation
Depolarisation
Line Polarisation – PA Flip
Survey Herbigs and T Tauris Herbig Be stars: 12 Herbig Ae stars: 11 T Tauri stars: 10
Data: Herbigs and T Tauris T TauriHerbig BeHerbig Ae PA Pol I
Polarisation across line? 1. No change 2. Depolarisation 3. LINE Polarisation Herbig Be: 7/12 Herbig Ae: 9/11 (Vink et al. 2002, 2003, 2005b) T Tauri: 9/10
QU: Herbig Ae and T Tauri star MWC 480 RY Tau
Models of COMPACT line emission 3D Monte Carlo Keplerian rotating disk Flat or constant opening angle Scattering only – no line transfer With and without an inner hole
With/without an inner hole
With/without a hole
Constraining the inner disk radius
Constraining the inner hole size: Single PA flip; known inclinations AB Aur Inner rim > 5 Rstar CQ Tau Inner rim > 4 Rstar SU Aur Inner rim > 3 Rstar Gradual PA change GW Ori Inner rim 3 or 4 Rstar (Vink et al. 2005a, 2005b)
McLean effect in FU Ori PA Pol I Accurate measurement of intrinsic polarisation PA
Imaged disks: position angles
Findings Herbig Be: disks on small scales Herbig Ae/T Tau: rotating accretion disks compact line emission inner holes sizes 3 – 5 stellar radii
H-band image of MWC 297
Chandra: MWC 297 companion