Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz

Slides:



Advertisements
Similar presentations
APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Advertisements

Strong coupling between Tamm Plasmon and QW exciton
Giant Rabi splitting in metal/semiconductor nanohybrids
SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.
Spectroscopy at the Particle Threshold H. Lenske 1.
An application of deterministic aperiodic structures : Sensing with Plasmonic quasi- crystals Ata Akatay July 24, 2009 Photonic Crystals - Romuald Houdré.
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Electron wavefunction in strong and ultra-strong laser field One- and two-dimensional ab initio simulations and models Jacek Matulewski Division of Collision.
Emergent Majorana Fermion in Cavity QED Lattice
Solvation Models. Many reactions take place in solution Short-range effects Typically concentrated in the first solvation sphere Examples: H-bonds,
Collective Response of Atom Clusters and Nuclei: Role of Chaos Trento April 2010 Mahir S. Hussein University of Sao Paulo.
Resonances and optical constants of dielectrics: basic light-matter interaction.
Plasmonics in double-layer graphene
Optical Engineering for the 21st Century: Microscopic Simulation of Quantum Cascade Lasers M.F. Pereira Theory of Semiconductor Materials and Optics Materials.
Quantum Plasmonics 第七组 马润泽 边珂 李亚楠 王硕 闪普甲 张玺.
Lavinia P. Rajahram 18 th April 2014 NANO LASER. SHRINKING THE LASER!
Quantum decoherence of excited states of optically active biomolecules Ross McKenzie.
Analysis of the Propagation of Light along an Array of Nanorods Using the Generalized Multipole Technique Nahid Talebi and Mahmoud Shahabadi Photonics.
Third harmonic imaging of plasmonic nanoantennas
Surface Plasmon Resonance General Introduction Steffen Jockusch 07/15/07 Plasmons: - collective oscillations of the “free electron gas” density, often.
Guillermina Ramirez San Juan
1 Surface Enhanced Fluorescence Ellane J. Park Turro Group Meeting July 15, 2008.
Jacob B Khurgin Johns Hopkins University, Baltimore Greg Sun
PG lectures Spontaneous emission. Outline Lectures 1-2 Introduction What is it? Why does it happen? Deriving the A coefficient. Full quantum description.
Rodolfo Jalabert CHARGE AND SPIN DIPOLE RESONANCES IN METALLIC NANOPARTICULES : collective versus single-particle excitations R. Molina (Madrid) G. Weick.
Coupling of InGaN quantum-well photoluminescence to silver surface plasmons PRB, Vol 60, No 16, Pg Gontijo, M. Boroditsky, and E. Yablonovitch,UCLA.
Valencia Bernd Hüttner Folie 1 New Physics on the Femtosecond Time Scale Bernd Hüttner CphysFInstP DLR Stuttgart.
Wave Nature of Light and Quantum Theory
2 ICO R. Filter, K. Słowik, J. Straubel, F. Lederer, and C. Rockstuhl Institute of Condensed Matter Theory and Solid State Optics Abbe.
Single atom lasing of a dressed flux qubit
Department of Electrical and Computer Engineering
ITOH Lab. Hiroaki SAWADA
Surface Plasmons devices and leakage radiation microscopy
Photo-induced Multi-Mode Coherent Acoustic Phonons in the Metallic Nanoprisms Po-Tse Tai 1, Pyng Yu 2, Yong-Gang Wang 2 and Jau Tang* 2, 3 1 Chung-Shan.
Nanophotonics Class 4 Density of states. Outline Spontaneous emission: an exited atom/molecule/.. decays to the ground state and emits a photon Emission.
Optical Properties of Gold Nanoparticles
Light and Matter Tim Freegarde School of Physics & Astronomy University of Southampton Classical electrodynamics.
Surface Plasmons What They Are, and Their Potential Application in Solar Cells Martin Kirkengen, AMCS, UiO Collaboration with Joakim Bergli, Yuri Galperin,
Superradiance, Amplification, and Lasing of Terahertz Radiation in an Array of Graphene Plasmonic Nanocavities V. V. Popov, 1 O. V. Polischuk, 1 A. R.
CLEO2004 K. L. Ishikawa No. 0 Enhancement in photoemission from He + by simultaneous irradiation of laser and soft x-ray pulses Kenichi L. Ishikawa Department.
Five-Lecture Course on the Basic Physics of Nanoelectromechanical Devices Lecture 1: Introduction to nanoelectromechanical systems (NEMS) Lecture 2: Electronics.
Magnetization dynamics
J.R.Krenn – Nanotechnology – CERN 2003 – Part 3 page 1 NANOTECHNOLOGY Part 3. Optics Micro-optics Near-Field Optics Scanning Near-Field Optical Microscopy.
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
مدرس المادة الدكتور :…………………………
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Quantum Optics with Surface Plasmons at CYCU 國家理論科學中心(南區) 成大物理系 陳光胤.
Microscopic model of photon condensation Milan Radonjić, Antun Balaž and Axel Pelster TU Berlin,
Nonlinear Optical Response of Nanocavities in Thin Metal Films Yehiam Prior Department of Chemical Physics Weizmann Institute of Science With Adi Salomon.
Computational Nanophotonics Stephen K. Gray Chemistry Division Argonne National Laboratory Argonne, IL Tel:
Dept. of Electrical and Electronic Engineering The University of Hong Kong Page 1 IMWS-AMP 2015 Manipulating Electromagnetic Local Density of States by.
The Structure and Dynamics of Solids
Förster Resonance Energy Transfer (FRET)
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Photoinduced nano and micron structures K. Nasu Solid state theory division, Institute of materials structure science, High energy accelerator research.
Introduction to Infrared Spectroscopy
International Scientific Spring 2016
Solid state physics is the study of how atoms arrange themselves into solids and what properties these solids have. Calculate the macroscopic properties.
1 August 27, 2012 Tailoring Light-Matter Interaction in Nanophotonic Environments Petru Tighineanu Quantum Photonics group.
Tunable excitons in gated graphene systems
Non-linear photochromism in the near-field of a nanoplasmonic array
Quantum Phase Transition of Light: A Renormalization Group Study
Strong Coupling between Molecules and Plasmonic Nanostructures
Interactions of Electromagnetic Radiation
Thick wedged films:.
Quantum Mechanical Treatment of The Optical Properties
Perturbation Theory Lecture 5.
Second quantization and Green’s functions
Jaynes-Cummings Hamiltonian
Atilla Ozgur Cakmak, PhD
Presentation transcript:

Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz Novotny group

Cavity QED Atoms Artificial atoms Strong coupling K. Hennessy et al., Nature 445, 896 (2007).

 d ~ 1 / (10 fs) … but also g large (enhancement of  r and  nr ) Strong MNP - molecule coupling? P. Anger et al., Phys. Rev. Lett. 96, (2006).

- Quantum theory of surface plasmons 1 - Open system dynamics for coupled MNP-molecule system - Results for spherical MNP and single molecule Goal of this work Strong MNP – molecule coupling ? Agenda 1 J. C. Ashley, T. L. Ferrell, and R. H. Ritchie, Phys. Rev. B 10, 554 (1974).

Quantum mechanical MNP description Implicit dynamics Explicit dynamics Problem: Quantization of EM fields in presence of absorbing media ? Linear response:Fluctuation – dissipation theorem, microscopic dynamics hidden in  (  ) or G  Nonlinear response ? Use Drude model to describe electron dynamics in MNPs Advantage:Quantization of surface plasmons (nonlinear response OK) Is Drude description appropriate for Au or Ag ?

Drude description Hot electron lifetimesDielectric function Drude ab initio I. G. Gurtubay et al., Phys. Rev. B 69, (2004). Johnson and Christy, Phys. Rev. B 6, 4370 (1972). Free electrons, dielectric background  0, plasmon damping  (  )

Surface plasmons Eigenmodes Free electrons moving in dielectric background … eigenmode expansion 1 1 U. Hohenester and J. Krenn, Phys. Rev. B 72, (2004). Quantization Electron current density described in terms of velocity potential  ( r ) 2 2 J. C. Ashley, T. L. Ferrell, and R. H. Ritchie, Phys. Rev. B 10, 554 (1974).

Surface plasmons Free electrons moving in dielectric background … eigenmode expansion 1 1 U. Hohenester and J. Krenn, Phys. Rev. B 72, (2004). Eigenmodes Interaction Hamiltonian Coupling between molecule dipole and surface plasmons

Quantum mechanical description Hamilton operator Molecule, quantized surface plasmons, interaction, light – matter coupling Master equation Lindblad form 1 for environement coupling (plasmon damping, photons) 1 Walls and Milburn, Quantum Optics (Springer, Berlin, 1995). Fluoresence spectra computed through quantum – regression theorem

dipole quadrupole PlasmonMolecule ´ hv exc Simulation setup Molecule excitation to auxiliary state 2 Internal relaxation to optically active state 1 Plasmon – mediated relaxation Novotny group

Molecule-MNP coupling z Diameter … 20 nm Transition energy … 2.3 eV Weak coupling For weak coupling (small molecule dipole) we can compare with Mie theory

Molecule-MNP coupling Strong coupling Molecule dipole moment for rhodamin 6G (15 Debye) Strong coupling ? Not for dipole, but only for higher modes !

Fluorescence spectra PlasmonMolecule Dipole mode driven by broadened hybrid plasmon - molecule mode Hybrid plasmon - molecule mode

d=3.5 nm d=2 nm Fluorescence decay

Polaritons Hybrid MNP – molecule modes Eigenstates of master equation provide polariton modes with complex energies Anticrossing … strong coupling

- Quantum theory of surface plasmons - Open system dynamics for coupled MNP-molecule system - Strong coupling between MNP and molecule is possible Summary - Different particle shapes and coupled MNPs - Förster – type energy transfer - Superradiance of many molecules ? Outlook