Can we see super-Planckian domains? Takehara Workshop June 6-8, 2011 Ken-ichi Nakao (Osaka City Unviersity) In collaboration with Tomohiro Harada and Umpei.

Slides:



Advertisements
Similar presentations
Charged Rotating Kaluza-Klein Black Holes in Dilaton Gravity Ken Matsuno ( Osaka City University ) collaboration with Masoud Allahverdizadeh ( Universitat.
Advertisements

ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
物理演算を利用したビデオエフェクタの 作成 浅野益弘. 研究内容 経緯 NiVE ( Nico Visual Effects )用のエフェ クトプラグインの作成 本プラグインにより動画作成にかかる 時間と手間の短縮と省力化を目指す.
Signatures of Large eXtra Dimensions LXD-Group ITP Frankfurt Marcus Bleicher, Sabine Hossenfelder (Tucson), Stefan Hofmann (Stockholm), Lars Gerland (TelAviv),
時間的に変化する信号. 普通の正弦波 は豊富な情報を含んでいません これだけではラジオのような複雑な情報 を送れない 振幅 a あるいは角速度 ω を時間的に変化 させて情報を送る.
09bd135d 柿沼健太郎 重不況の経済学 日本の新たな 成長へ向けて.
Excelによる積分.
+ Observational constraints on assisted k-inflation Tokyo University of Science Junko Ohashi and Shinji Tsujikawa.
Rotating BHs at future colliders: Greybody factors for brane fields Kin-ya Oda Kin-ya Oda, Tech. Univ. Munich Why Study BHs at Collider? BH at Collider.
Gerard ’t Hooft Spinoza Institute Utrecht University CMI, Chennai, 20 November 2009 arXiv:
ANALYSIS OF PDE & GENERAL RELATIVITY Sergiu Klainerman June, 2000.
CGC confronts LHC data 1. “Gluon saturation and inclusive hadron production at LHC” by E. Levin and A.H. Rezaeian, arXiv: [hep-ph] 4 May 2010.
実験5 規則波 C0XXXX 石黒 ○○ C0XXXX 杉浦 ○○ C0XXXX 大杉 ○○ C0XXXX 高柳 ○○ C0XXXX 岡田 ○○ C0XXXX 藤江 ○○ C0XXXX 尾形 ○○ C0XXXX 足立 ○○
Astronomy and Cosmology week 5 – Tuesday 6 May 2003 LIGHT Star Date Light lecture Workshop: calculate Planck mass (Univ.5e Ch.28) break Minilectures Thursday:
Key Open Problems in Black Hole Physics and Gravitation Theory Today (A personal perspective!) Pankaj S. Joshi.
Colliding Hadrons as Cosmic Membranes and Possible Signatures of Lost Momentum I.Ya.Aref’eva Steklov Mathematical Institute, Moscow A topical conference.
Dynamics of Colliding Branes and Black Brane Production Dynamics of Colliding Branes and Black Brane Production Yu-ichi Takamizu (Waseda univ, Japan) With.
(RESCEU &IPMU ) 横山順一 Inflaton φ slow rollover Reheating V[φ] BEGINNING?? END?? Λ But little is known about the beginning and end of inflation. Slow-roll.
Black Hole (BH)  Introduction to BH  Motivation to study BH  Formation of BH  Cool slides  Size of BH  Properties of BH  Evidence for BH.
Gravitational waves and neutrino emission from the merger of binary neutron stars Kenta Kiuchi Collaboration with Y. Sekiguchi, K. Kyutoku, M. Shibata.
Black Hole Factories: How the LHC may usher in a new era of physics A presentation by Jeremiah Graber Purdue University 10/05/07 I.
“Einstein Gravity in Higher Dimensions”, Jerusalem, Feb., 2007.
Black Holes Escape velocity Event horizon Black hole parameters Falling into a black hole.
Gravitational Physics: Quantum Gravity and Other Theoretical Aspects Luca BombelliTibor Torma Arif Caixia Gao Brian Mazur approaches to quantum gravity:
“Models of Gravity in Higher Dimensions”, Bremen, Aug , 2008.
1 流体ブラックホールの ホーキング輻射と 準正規振動 京都大学 人間・環境学研究科 阪上雅昭 ,奥住聡 物理学会誌 11月号 解説 掲載予定.
たくさんの人がいっしょに乗れる乗り物を 「公共交通」といいます バスや電車 と 自動車 の よいところ と よくない ところ よいところ と よくない ところ を考えてみよう!
物質厚さの考察(手始め) エネルギー損失 – 物質の Stopping power, density, thickness に依る。 – 陽電子の運動量 (10-250MeV/c の領域 ) に大きく依存 しない。 – 大体、 5MeV/cm (Al), 2.5MeV/cm (Polycarbonate)
Brane Gravity and Cosmological Constant Tetsuya Shiromizu Tokyo Institute of Technology Tokyo Institute of Technology 白水 White Water.
Structure formation in Void Universes Osaka City University (OCU) Ryusuke Nishikawa collaborator Ken-ichi Nakao (OCU),Chul-Moon Yoo (YITP) ? 1/15.
Evolution of Emerging Flux and Associated Active Phenomena Takehiro Miyagoshi (GUAS, Japan) Takaaki Yokoyama (NRO, Japan)
Hawking radiation for a Proca field Mengjie Wang (王梦杰 ) In collaboration with Carlos Herdeiro & Marco Sampaio Mengjie Wang 王梦杰 Based on: PRD85(2012)
A Metric Theory of Gravity with Torsion in Extra-dimension Kameshwar C. Wali (Syracuse University) Miami 2013 [Co-authors: Shankar K. Karthik and Anand.
Coalescence of Five-dimensional Black Holes ( 5次元ブラックホールの合体 )
Distance to Ringing BHs: New GW Astronomy and Gravity Test Kunihito Ioka (KEK) Hiroyuki Nakano (RIT) Hirotaka Takahashi (Nagaoka U. Tech.)
Black Hole Universe Yoo, Chulmoon ( YITP) Hiroyuki Abe (Osaka City Univ.) Ken-ichi Nakao (Osaka City Univ.) Yohsuke Takamori (Osaka City Univ.) Note that.
Application of LES to CFD simulation of Diesel combustion 3604A058-2 Fumio KUWABARA.
SINGULARITY THEOREMS Singularity = place where physics breaks down –usually, where some predicted quantity becomes infinite, e.g., curvature of spacetime.
Gravitational collapse of massless scalar field Bin Wang Shanghai Jiao Tong University.
Black Holes Pierre Cieniewicz. What are they? A Black Hole (BH) is a place in space from which nothing can escape The reason for this is gravity Some.
Black Hole Universe -BH in an expanding box- Yoo, Chulmoon ( YITP) Hiroyuki Abe (Osaka City Univ.) Ken-ichi Nakao (Osaka City Univ.) Yohsuke Takamori (Osaka.
Prof. Noriyoshi Yamauchi
1 Observation Of High-Energy Neutrino Reaction And The Existence Of Two Kinds Of Neutrinos 高エネルギーニュートリノの観測と二種類のニュートリノの存在 G. T. Danby et al. Phys. Rev.
Low scale gravity black holes at LHC Enikő Regős ( CERN )
K p k'k' p'p'  probability amplitude locality,Lorentz inv.gauge inv. spinor   vector A  T  electron quark scattering scattering cross section Feynman.
Gravitational Self-force on a Particle in the Schwarzschild background Hiroyuki Nakano (Osaka City) Norichika Sago (Osaka) Wataru Hikida (Kyoto, YITP)
Takeshi Morita Tata Institute of Fundamental Research Resolution of the singularity in Gregory-Laflamme transition through Matrix Model (work in progress)
Black Holes. Escape Velocity The minimum velocity needed to leave the vicinity of a body without ever being pulled back by the body’s gravity is the escape.
BLACK HOLES. BH in GR and in QG BH formation Trapped surfaces WORMHOLES TIME MACHINES Cross-sections and signatures of BH/WH production at the LHC I-st.
Einstein 2005 July 21, 2005 Relativistic Dynamical Calculations of Merging Black Hole-Neutron Star Binaries Joshua Faber (NSF AAPF Fellow, UIUC) Stu Shapiro.
松尾 善典 Based on YM-Tsukioka-Yoo [arXiv: ] YM-Nishioka [arXiv: ]
Numerical Relativity in Cosmology - my personal perspective - Yoo, Chulmoon ( Nagoya U. ) with Hirotada Okawa ( Lisbon, IST ) New Perspectives on Cosmology.
연세대 특강 What is a Black Hole? Black-Hole Bomb(BHB) Mini Black Holes
Black Holes and Gravity 1)Type II Supernova 2)Neutron Stars 3)Black Holes 4)More Gravity April 7, 2003
Kaluza-Klein Braneworld Cosmology S Kanno, D Langlois, MS & J Soda, PTP118 (2007) 701 [arXiv: ] Misao Sasaki YITP, Kyoto University.
Innermost stable circular orbits around squashed Kaluza-Klein black holes Ken Matsuno & Hideki Ishihara ( Osaka City University ) 1.
Teruaki Suyama Black hole perturbation in modified gravity Research Center for the Early Universe, University of Tokyo 公募研究 ( 計画研究 A05) 「強い重力場での修正重力理論の検証に向けた理論的研究」
Gravity on Matter Equation of State and the Unruh temperature Hyeong-Chan Kim (KNUT) 2016 FRP workshop on String theory and cosmology Seoul, Korea, June.
Search for Catalysis of Black Holes Formation in Hight Energy Collisions Irina Aref’eva Steklov Mathematical Institute, Moscow Kolomna, QUARKS’2010, June.
3 rd Karl Schwarzschild Meeting, Germany 24 July 2017
Gravitational waves from collapsing domain walls
Investigation of laser energy absorption by ablation plasmas
QUASI-SPHERICAL GRAVITATIONAL COLLAPSE Ujjal Debnath Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah , India.
Throat quantization of the Schwarzschild-Tangherlini(-AdS) black hole
Masashi KIMURA (YITP, Kyoto university) w/ N.Tsukamoto and T.Harada
Fundamental Cosmology: 5.The Equation of State
GRAVITATIONAL COLLAPSE, BLACK HOLES AND NAKED SINGULARITIES
Kaluza-Klein Black Holes in 5-dim. Einstein-Maxwell Theory
Global Defects near Black Holes
Graviton Emission in The Bulk from a Higher Dimensional Black Hole
Presentation transcript:

Can we see super-Planckian domains? Takehara Workshop June 6-8, 2011 Ken-ichi Nakao (Osaka City Unviersity) In collaboration with Tomohiro Harada and Umpei Miyamoto (Rikkyo University) Hirotada Okawa and Masaru Shibata (YITP)

If GR correctly describes gravitational phenomena… Concentration of mass Collapse due to self-gravity Large spacetime curvature, large energy density, large stress All know theories of physics including GR are not available → New Physics (Superstring? Brane World? …..) Generation of spacetime singularities Near spacetime singularities § Introduction by Penrose(1965), Hawking & Penrose (1970)…..

Are spacetime singularities observable? Cosmic censorship hypothesis by Penrose (1969) Weak version: spacetime singularities generated by gravitational collapses are hiden behind event horizons Strong version : spacetime is globally hyperbolic ? × in 4-dim spaecetime. § Cosmic censorship hypothesis

“Domain of super-Planckian (SP) scale = Border of spacetime” 4 Domain A is called the border or SP domain, if E P = fundamental Planck scale  = a positive consitant of  Practical spacetime singularity = Domain in which GR is not available Harada and Nakao, PRD70, (2004) where Visible super-Planckian domain ≈ Naked singularity

Large extra-dimension scenario 5 Arkani-Hammed, Dimopoulos and Dvali 1998 Relation between D(>4)-dimensional Planck energy and 4-dimensional one: (R: length scale of extra-dimansions)

Collisions of high energy particles in large extra-dimension scenario 6 Giddings & Thomas (2001), Dimopoulos and Landsberg (2001) Gravitational radius of the center of mass energy E Production rate much larger than 4-dimansional theory Cross section of black hole production

Visible SP Domains generated by collisions of high energy particles 7 particle Domain into which two particles can enter at once If a black hole forms. If no black hole forms. Nakao, Harada and Miyamoto (2010) We call this the “collision domain”.

8 Volume of the collision domain in (D-1)-dimensional space Area of the base of the cylinder Height of the cylinder Volume in extra-dimensions Average energy density in the collision domain (V N : Volume of an N-dim sphere)

9 Condition of visible SP domain formation from 00-component of Einstein’s equations If max >1, then  is allowed. SP domain with no black hole can form ! 『 Gravitational radius=Compton length, if M = E P. 』  : max 2 where S N = Area of N dim sphere.

The value of max Generation rate of visible SP domains 10 Generation rate of visible SP domain >> Generation rate of BH Generation rate of black holes Practically, the weak version of cosmic censorship is not satisfied.

13 High speed scattering of two black holes by higher dimensional numerical relativity Scattering or merger of high speed BH’s ( e.g., classical counterpart of high energy scattering of elementary particles ) Numerical relativity Method to study various phenomena with strong gravity by numeically integrating Einsteinn’s equations Evolution of binary composed of compact objects (NS, BH) Main target of GW physics New target of numerical relativity New techniques are necessary

12 Scatter or merger of high speed BH’s BH b Rg Rg

13 For large impact parameter b After scattering, two BH’s go apart to infinity Scatter or merger of high speed BH’s

14 BH horizon For small impact parameter b Formation of one larger BH Scatter or merger of high speed BH’s

Initial data If the distance between two BH’s is large enough, each BH and its neighborhood is very similar to Schwarzschild-Tangherlini spacetime R g = E P (M/E P ) 1/2 : gravitational radius Scattering of high speed BH’s in 5 dimensions (equal mass M ) 15 by Shibata, Okawa, Yamamoto (2008)

Boost transformation translation 16

Extrinsic curvature of t = const. hypersurface Other components vanish. 17

Initial data for two BH’s approaching to each other with velocity v  and  K ij are determined so that constraint equations are satidfied. 4-dim. spatial metric Extrinsic curvature However here, we have set  K ij. This is a good approximation for the case of large enough distance between the two BH’s. ここで、 In this initial data, there is almost no junk radiation. 18

on the horizon of a spherically symmetric BH with M= E P in 5-dim spacetime. SP domain:

is shown in the unit of (E P /M) 1/2. by Okawa, Shibata & KN (2011) BH’s 20 Example: b=3.38R g, v =0.7 Scattering of high speed BH’s in 5 dimensions (equal mass M ) Visible SP domain

21 After scattering, two BH’s will go apart to infinity K2K2 [E P /M] 2

22 K v [E P /M]

23 If E P < M < 19E P, visible SP domain forms by the scattering of classical BH’s ! The largest value of K in our simulations is If finer simulations becomes possible, we may find larger K.

v Scatter Simulations break down. (Naked singularity?) Merger b [R g ] b C b B

Summary and discussion We can see super-Planckian physics if the spacetime dimension is larger than four (Naked singularity might form). We can see super-Planckian physics if the spacetime dimension is larger than four (Naked singularity might form). It is unclear why visible super-Planckian domain forms by the scattering of 5-dim BH’s. It is unclear why visible super-Planckian domain forms by the scattering of 5-dim BH’s. What is observed ? What is observed ? 25

潮汐力による加速 L = 時空の曲率半径 m m X = 粒子間の距離 大雑把に 重力源 9 Geodesic deviation equations

m m 粒子間の距離がコンプトン長でも、プランク時間内で プランクエネルギーまで加速される 時空の曲率半径 L が プランク長さ l pl より短いとき 量子論的粒子生成で生まれた粒子は、 高エネルギー衝突によりブラックホールを形成? 10