LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS, Russia) A. Pukhov, S. Kiselev (Düsseldorf University, Germany)
OUTLINE INTRODUCTION Electron Acceleration Bubble Regime Experiments BUBBLE REGIME: PHENOMENOLOGICAL THEORY Electromagnetic field in plasma cavity Plasma electron trapping and acceleration Beam control ELECTROMAGNETIC RADIATION Spectrum of betatron radiation Laser-plasma x-ray source Radiation effects SUMMARY
ELECTRON ACCELERATION Ya.B. Fainberg, UFN 93, 617, (1967) acceleration by relativistic electron bunch in plasma T. Tajima and J.M. Dawson, PRL 43, 267, (1979) acceleration by laser pulse in plasma x-t y electron density
ELECTRON ACCELERATION Plasma cavity 100 m 1 m RF cavity V. Malka, Dream beam, 2007
ELECTRON ACCELERATION NBNL 2006 E-167: Energy Doubling of 42GeV Electrons
ELECTRON ACCELERATION K. Nakajima, HEEAUP 2005
ELECTRON ACCELERATION Scheme of principle Experimental set up V. Malka, Dream beam, 2007
LASER-PLASMA PARAMETERS laser intensity ratio of electron quiver energy to the energy at rest laser pulse duration relativistically strong laser field short pulse critical density plasma density hot spot size plasma frequency
ELECTRON ACCELERATION 100% ENERGY SPREAD IN EARLY EXPERIMENTS V.Malka et al., Science 298, 1596 (2002) S.P.D. Mangles et al., PRL 94, (2005 ) 160 J, 650 fs, 6 μm I 3 x W/cm 2 1 J, 30 fs, 10 Hz (Total Charge : 5 nC) Number of Electrons Electron Energy (MeV) Detection Threshold T ~ 18 MeV
QUASI-MONOENERGETIC e - -BEAM 1) T. Katsouleas, Nature 431, 515 (2004) 2) S.P.D. Mangles et al., Nature 431, 535 (2004) 3) C.G.R. Geddes et al., Nature 431, 538 (2004) 4) J.Faure et al., Nature 431, 541 (2004) Extremely collimated beams with 10 mrad divergence and 0.5±0.2nC of charge at 170±20MeV have been produced. [ J.Faure et al., Nature 431, 541 (2004) ]
BUBBLE REGIME bubble A. Pukhov and J. Meyer-ter-Vehn, Applied Physics B, 74, 355 (2002) Ponderomotive force of laser pulse push out plasma electrons from region where laser intensity is high, while heavy ions can be considered as immobile.
BUBBLE REGIME circular polarization
GEV: CHANNELING OVER CM-SCALE LNBL EXPERIMENT
0.5 GEV BEAM GENERATION E. Esarey, Dream beam, 2007
1 GEV BEAM GENERATION E. Esarey, Dream beam, 2007
TUNABLE e - -ACCELERATOR: USING COLLIDING PULSE pump injection pump injection late injection early injection pump injection middle injection Z inj =225 μm Z inj =125 μm Z inj =25 μm Z inj =-75 μm Z inj =-175 μm Z inj =-275 μm Z inj =-375 μm J. Faure et al., Nature december 2006
PW LASER SYSTEM IN INSTITUTE OF APPLIED PHYSICS E=30 TeV/m
CONCLUSIONS Rapid progress in laser-plasma acceleration: GEV in 3 cm, tunable quasi-monoenergetic e - -bunches
BUBBLE REGIME: PHENOMENOLOGICAL THEORY
QUASISTATIC APPROXIMATION
x v = c - gauge - wakefield potential relativistic electron hole in plasma (not relativistic ion ball)
x v = c ELECTROMAGNETIC FIELD IN BUBBLE I. Kostyukov, A. Pukhov, S. Kiselev, Phys. Plasmas, 2004, 11, 5256 (LASER-PLASMA INTERACTION) К.V. Lotov, Phys. Rev. E, , (e - -BEAM-PLASMA INTERACTION)
ELECTRON TRAPPING Hamiltonian of electron canonical transformation x - t y bubble plasma trapping condition Potential from PIC
ELECTRON ACCELERATION x - t y bubble plasma
BETATRON OSCILLATIONS x - t y bubble plasma x - t y
BEAM CONTROL BY PLASMA PROFILING laser pulse plasma wave Dephasing: The accelerated electrons slowly outrun the plasma wave and leave the accelerating phase. T. Katsouleas, Phys. Rev. A 33, 2056 (1986). Choosing a proper density gradient one can uplift the dephasing limitation and keep the phase synchronism between the bunch of relativistic particles and the plasma wave over extended distances.
LAYERED PLASMA plasma wake electron bunch laser pulse 2.5∙ ∙ xω p0 /c at A. Pukhov, I. Kostyukov, Phys. Rev. E, 77, (2008) Putting electrons into the n-th wake period behind the driving laser pulse, the maximum energy gain is increased by the factor 2πn over that in the case of uniform plasma.
ENERGY SPREAD REDUCTION energy spread mechanism peak acceleration min acceleration x/λ L ε (GeV) n/n c x/λ L ε (GeV) x/λ L decelerating layer №2 decelerating layer №1 1 accelerating layer №1 accelerating layer №2 2 energy spread reduction peak deceleration min deceleration
CONCLUSIONS 1.The Bubble produces a quasi-monoenergetic e - −beams. 2. The Bubble is an efficient energy converter: % laser energy is transformed to the e - −beam. 3. Self-guiding over many Rayleigh lengths. 4. Plasma density profiling for beam control
BETATRON RADIATION
DIPOLE RADIATION electron betatron orbit electron velocity deflection angle electron emission angle plasma ion channel - betatron frequency dipole regime of emission - radiation frequency
SYNHROTRON RADIATION synchrotron regime of emission quasi-continuous spectrum - critical frequency
BETATRON RADIATION SPECTRUM I. Kostyukov, S. Kiselev, A. Pukhov, Phys. Plasmas, 2003, 10, 4818
SYNCHROTRON RADIATION 100 – 400 m undulator Advanced Photon Source, Argonne National Laboratory,
LASER-PLASMA X-RAY SOURCE S. Kiselev, A. Pukhov, I. Kostyukov, Phys. Rev.Lett., 2004, 93, simultaneous acceleration and x-ray generation laser pulse propagates in plasma a few centimeters laser systems sizes – several meters COMPACTNESS HIGH POWER PHOTON ENERGY X-RAY PULSE DURATION plasma bubble radiation
RADIATION OF EXTERNAL e - -BEAM
QUANTUM EFFECTS IN STRONG PLASMA FIELD E. Nerush, I. Kostyukov, Phys. Rev. E 75, (2007) quantum photon emission e - e + pair production PLASMA FIELD INSTEAD OF CRYSTALLINE FIELD plasma bubble z r plasma bubble 1) electron motion is semiclassical 2) photon emission is quantum V.N.Baier, V.M.Katkov, V.M.Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (Singapore, World Scientific 1998). Semiclassical operator method
RADIATION REACTION P. Michel, et al., Phys. Rev.E 74, (2006). I. Kostyukov, E. Nerush, and A.Pukhov, JETP 103, 800 (2006) radiation
BETATRON RADIATION A. Rousse et al., Phys. Rev.Lett. 2004, 93,
LASER-PLASMA SYNCHROTRON H.-P. Schlenvoigt et al, Nature Physics 4, (2008)
INTENSE COHERENT THZ RADIATION GENERATION
CONCLUSIONS Compact and powerful laser-plasma radiation sources: X-ray, optical and THz radiation
SUMMARY Laser-plasma accelerators: GEV in 3 cm, tunable quasi- monoenergetic e - -bunches The Bubble produces a quasi-monoenergetic e - -beams with efficiency conversion % Laser plasma can be a compact and powerful source of X- rays, optical radiation and THz pulses.