2004-06-03CMU-CS lunch talk, Gerard Lemson1 Computational and statistical problems for the Virtual Observatory With contributions from/thanks to: GAVO.

Slides:



Advertisements
Similar presentations
VODA - A Sampo Project Johan Lindroos – CSC Scientific Computing Ltd, Finland Pekka Järveläinen – CSC Scientific Computing Ltd, Finland Richard Hook -
Advertisements

/13SNAP data model Simulation data model.
Gerard Lemson, IVOA DM 28/5/2004. Unified domain model for Astronomy Much maligned and misunderstood (anonymous) with Pat Dowler and Tony Banday (MPA)
May 18, 2007TIG, closing plenary Conclusions from theory IG sessions, Beijing 2007.
IVOA Interop meeting 05/17/2006 Victoria F.Bonnarel (CDS) Generic Data discovery, Cube acces: CGPS Archive browser F.Bonnarel,T.Boch,D.Durand (CDS, CADC)
September 13, 2004NVO Summer School1 VO Protocols Overview Tom McGlynn NASA/GSFC T HE US N ATIONAL V IRTUAL O BSERVATORY.
What does LOFAR have to do with the Virtual Observatory (VO)? LOFAR Science Day 16 December 2003 Melbourne David Barnes The University of Melbourne.
The Australian Virtual Observatory e-Science Meeting School of Physics, March 2003 David Barnes.
CASDA Virtual Observatory CSIRO ASTRONOMY AND SPACE SCIENCE Arkadi Kosmynin 11 March 2014.
VO-DAS Chenzhou CUI Chao LIU, Haijun TIAN, Yang YANG, etc National Astronomical Observatories, CAS.
ESO-ESA Existing Activities Archives, Virtual Observatories and the Grid.
The Virtual Observatory in Germany and abroad A status report with examples/demos from GAVO and other national VOs.
20 January 2004ESS Technical Colloquium1 NVO Infrastructure Gretchen Greene T HE US N ATIONAL V IRTUAL O BSERVATORY.
Solar and STP Physics with AstroGrid 1. Mullard Space Science Laboratory, University College London. 2. School of Physics and Astronomy, University of.
Lessons learnt with Aladin and characterization experience for SIA2.0 F.Bonnarel, CDS (credit to Aladin developpers, CADC,ECF,ESAC, ESO VO people, DAL.
S. Derriere et al., ESSW03 Budapest, 2003 May 20 UCDs - metadata for astronomy Sébastien Derriere François Ochsenbein Thomas Boch CDS, Observatoire astronomique.
Supported by the National Science Foundation’s Information Technology Research Program under Cooperative Agreement AST with The Johns Hopkins University.
11/27/2003IVOA Small Projects Meeting China-VO Data Access Service Based on OGSA Jian Sang National Astronomical Observatory of China Chinese Virtual.
Diversity of domain descriptions in natural science: virtual observatory as a case study Briukhov D.O., Kalinichenko L.A., Zakharov V.N. Institute of Informatics.
The Japanese Virtual Observatory (JVO) Yuji Shirasaki National Astronomical Observatory of Japan.
Astronomical Data Query Language Simple Query Protocol for the Virtual Observatory Naoki Yasuda 1, William O'Mullane 2, Tamas Budavari 2, Vivek Haridas.
The GAVO Cross-Matcher Application Hans-Martin Adorf, Gerard Lemson, Wolfgang Voges GAVO, Max-Planck-Institut für extraterrestrische Physik, Garching b.
Alex Szalay, Jim Gray Analyzing Large Data Sets in Astronomy.
Characterisation Data Model applied to simulated data Mireille Louys, CDS and LSIIT Strasbourg.
F. Genova, VOTECH kickoff meeting, 2004/11/ Interoperability standards F. Genova, M. Allen, T. Boch, F. Bonnarel, S. Derriere, P. Fernique, F. Ochsenbein,
GAVO – after one year H.-M. Adorf & the GAVO team.
Theory in the German Astrophysical VO Summary: We show results of efforts done within the German Astrophysical Virtual Observatory (GAVO). GAVO has paid.
Functions and Demo of Astrogrid 1.1 China-VO Haijun Tian.
Hello!. International Virtual Observatory Alliance Ajit Kembhavi, IUCAA, Pune.
Spectroscopy in VO, ESAC Mar Access to Spectroscopic Data In the VO Doug Tody (NRAO/US-NVO ) for the IVOA DAL working group I NTERNATIONAL.
Markus Dolensky, ESO Technical Lead The AVO Project Overview & Context ASTRO-WISE ((G)A)VO Meeting, Groningen, 06-May-2004 A number of slides are based.
JVO JVO Portal Japanese Virtual Observatory (JVO) Prototype 2 Masahiro Tanaka, Yuji Shirasaki, Satoshi Honda, Yoshihiko Mizumoto, Masatoshi Ohishi (NAOJ),
May 10, 2006IVOA-GGF Astro-RG WS1 Welcome and Workshop Goal Masatoshi Ohishi / NAOJ & Sokendai Chairman, IVOA 大石雅寿 / 国立天文台 & 総合研究大学院大学
Theory in the Virtual Observatory Gerard Lemson, GAVO.
11/26/2003IVOA Small Projects Meeting Potential R&D focuses for China-VO Chenzhou Cui National Astronomical Observatory of China Chinese Virtual.
A PPARC funded project Tony Linde Programme Manager AG-SAG FM6 Programme Manager Report Wed 25-May, 2005 UCL.
Federation and Fusion of astronomical information Daniel Egret & Françoise Genova, CDS, Strasbourg Standards and tools for the Virtual Observatories.
Wiss. Beirat AIP, ClusterFinder & VO-Methods H. Enke German Astrophysical Virtual Observatory ClusterFinder VO Methods for Astronomical Applications.
Federated Discovery and Access in Astronomy Robert Hanisch (NIST), Ray Plante (NCSA)
Workshop Garching, June 27 – July Statistical Cross-Matching Across Distributed Archives H.-M. Adorf & GAVO Team MPI f. extraterrestrische Physik.
Solar and space physics datasets within a Virtual Observatory: the AstroGrid experience Silvia Dalla * and Nicholas A Walton  * School of Physics & Astronomy,
European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Applications May 2006, Victoria, Canada VOQuest A tool.
GES 2007, The German Astrophysical Virtual Observatory (GAVO) Knowledge Networking for Astronomy in Germany and abroad Gerard Lemson 1,2, Wolfgang.
March 1st, 2006Prospective PNG PNG: Databases - Virtual Observatory.
16 October 2003Registry Interface CallsIVOA Interoperability, Strasbourg IVOA Interoperability Elizabeth Auden & Registry Workgroup 16 – 17 October 2003.
The International Virtual Observatory Alliance (IVOA) interoperability in action.
WP 7 - JRA2 - Data Access Protocols and Data Models EuroVO-AIDA – Final review – 5 October 2010 Christophe Arviset (ESA) Work Package 7 - JRA2 Data Access.
German Astrophysical Virtual Observatory Overview and Results So Far W. Voges, G. Lemson, H.-M. Adorf.
21-jun-2009 IVOA Standards Pedro Osuna ESA-VO Project Science Archives and Computer Support Engineering Unit (SRE-OE) Science Operations Department (SRE-O)
Gerard Lemson Theory in the VO and the SimDB specification Euro-VO DCA workshop Garching, June 26, 2008 Feedback questionnaire.
Strasbourg, EURO-VO DCA First Board Meeting (GA)VO projects at MPG(E) and participation in VO-DCA (tbcd) Wolfgang Voges, Gerard Lemson.
Theory in the VO, Garching, Theory in the Virtual Observatory (TVO) Goals of Euro-VO DCA WP4 Gerard Lemson, GAVO ARI-ZAH, Heidelberg MPE, Garching.
12 Oct 2003VO Tutorial, ADASS Strasbourg, Data Access Layer (DAL) Tutorial Doug Tody, National Radio Astronomy Observatory T HE US N ATIONAL V IRTUAL.
JVO portal service Yuji Shirasaki National Astronomical Observatory of Japan.
Determination of radio spectra from catalogues and identification of Gigahertz peaked sources (GPS) from the Virtual Observatory Bernd Vollmer, S. Derriere,
Publishing Combined Image & Spectral Data Packages Introduction to MEx M. Sierra, J.-C. Malapert, B. Rino VO ESO - Garching Virtual Observatory Info-Workshop.
F. Genova, AstroNET meeting, Poitiers The Astrophysical Virtual Observatory.
VO Data Access Layer IVOA Cambridge, UK 12 May 2003 Doug Tody, NRAO.
1 eScience in Astronomy: Grid & VO GAVO III KickOff eScience in Astronomy: VO & GRID eScience: making the most advanced tools of IT available to scientists.
IVOA Interoperability Workshop Theory and the Applications Interest Group.
The AstroGrid-D Information Service Stellaris A central grid component to store, manage and transform metadata - and connect to the VO!
Sept. 2004IVOA Meeting / Pune1 Virtual Observatory Query Language (VOQL) Working Group William O’Mullane For Masatoshi Oishi T HE US N ATIONAL V IRTUAL.
End of the Beginning for IVOA is now Roy Williams IVOA Technical Lead.
JENAM 2008 Theory Standards for the Virtual Observatory SimDB + SimDAP.
Introduction: AstroGrid increases scientific research possibilities by enabling access to distributed astronomical data and information resources. AstroGrid.
April 29, 2005ISGC Taipei1 Recent Progress of the Japanese Virtual Observatory Project Masatoshi Ohishi / NAOJ 大石雅寿 / 国立天文台
Virtual Observatory for cosmological simulations
Moving towards the Virtual Observatory Paolo Padovani, ST-ECF/ESO
Google Sky.
Datamining VizieR and SDSS
Presentation transcript:

CMU-CS lunch talk, Gerard Lemson1 Computational and statistical problems for the Virtual Observatory With contributions from/thanks to: GAVO team: Wolfgang Voges, Matthias Steinmetz, Harry Enke, Hans-Martin Adorf Joerg Colberg Pat Dowler (CVO), Tony Banday (MPA), Class X team

CMU-CS lunch talk, Gerard Lemson2 Overview Intro to VO IVOA standards process Some concrete examples, demos Scenarios, science cases Interesting problems

CMU-CS lunch talk, Gerard Lemson3 Intro to VO Very large data sets Multi-wavelength astronomy made easy Federation of distributed archives. Publication of expert services. New software developments. Why contribute ? Too easy to do bad science ?

CMU-CS lunch talk, Gerard Lemson4

CMU-CS lunch talk, Gerard Lemson5 IVOA standards and specifications Collaboration of national VOs Develop standards for interoperability –publication (registry) –description (dm, ucd) –query (dal, voql) –data transfer (votable) –services (grid/web services) Interest groups: –architecture –applications –theory

CMU-CS lunch talk, Gerard Lemson6 Babylonian confusion

CMU-CS lunch talk, Gerard Lemson7 VO domain model as Esperanto

CMU-CS lunch talk, Gerard Lemson8

CMU-CS lunch talk, Gerard Lemson9

CMU-CS lunch talk, Gerard Lemson10 Protocols VOTable + UCD  DM based XML + XSLT SCS/SIAP/SSAP  ADQL  VOQL SkyNode Registry resource model and harvesting interface

CMU-CS lunch talk, Gerard Lemson11 Data models Targeted “small” data models –Quantity –Observation –Simulation Domain model as ontology Meta-data repository Bindings Representations, views, transformations

CMU-CS lunch talk, Gerard Lemson12

CMU-CS lunch talk, Gerard Lemson13

CMU-CS lunch talk, Gerard Lemson14 Theory in the VO With Joerg Colberg Spatial query protocols irrelevant No object-based federation New phenomena/observables. Different kind of provenance. Model dependency. Theoretical archives rather unstructured. Theory/observational interface.

CMU-CS lunch talk, Gerard Lemson15 Observed Simulated Thanks to Alexis Finoguenov, Ulrich Briel, Peter Schuecker, MPE) Thanks to Volker Springel

CMU-CS lunch talk, Gerard Lemson16 Some concrete efforts NVO (USA): Registry (DIS), ADQL, SkyNode, data mining (UPitt+CMU)DIS AstroGrid (UK): grid/web services, work flows AVO (ESO, CDS, AstroGrid): Aladin visualization tool, science demosAladin visualization tool CVO (Canada): archive federation France VO: GalICSGalICS GAVO (Germany): data publication (RASS photons), application prototypes, data mining, theoryGAVO RASS photonsdata mining theory

CMU-CS lunch talk, Gerard Lemson17 Scenarios, use cases, results Registry based data discovery and retrieval (GAVO, DIS) Class X classifier and generalizations X-Ray cluster analysis using simulations Cluster detection by combining SDSS and RASS catalogues (Schuecker et al, astro- ph/ ) Discovery of obscured quasars using VO tools (Padovani et al, astro-ph/ )

CMU-CS lunch talk, Gerard Lemson18 Typical workflow

CMU-CS lunch talk, Gerard Lemson19 Download manager

CMU-CS lunch talk, Gerard Lemson20

CMU-CS lunch talk, Gerard Lemson21 Theory/observational interface: X-Ray clusters Goal: interpret observations of X-Ray cluster using results of hydro simulations: 1.Extract parameters from the observation (services) that can be queried directly (dm, ucd). 2.Find simulations that may be relevant, that are “ similar ” to observation by searching registry for hydro simulations of clusters (registry, voql). Requires simulation results to be published and described in sufficient detail (dm, ucd). 3.Observe simulations using “ virtual telescope ” (application, grid/webservices) configured according to telescope configuration extracted from observation (dm). 4.Compare real with virtual observation (services). 5.For interesting simulation, extract full simulation result (dal) for further analysis, 6.or analyse the simulation using services (grid-services) provided by the archive or some other service provider

CMU-CS lunch talk, Gerard Lemson22

CMU-CS lunch talk, Gerard Lemson23 Computational, statistical and astronomical challenges I Data models Data modeling Data model transformations, views Archive structure Database tuning Querying, matching Distributed query algorithms Probabilistic matchers, systematic errors, identification of moving sources Improve identification using full point process information Add physical properties, not just position, to identification Complex, frequency dependent source definition Characterization of complex results in "few" parameters for discovery (PCA (after transformation)? 3D->2D ?) Comparison of real and virtual observations

CMU-CS lunch talk, Gerard Lemson24 Usage Complex model Simplify using view concept Example from RDB XSLT for translation between domain XSD and application-specific derived schemas.

CMU-CS lunch talk, Gerard Lemson25 CREATE VIEW SEXTRACTOR_GALAXIES AS SELECT S.RA AS _RAJ2000, S.DEC AS _DECJ2000, -2.5 * LOG(S.FLUX) AS M_APP, S.CLASSIFICATION, I.STORAGE_URL AS IMAGE FROM SOURCE S, SOURCE_CATALOGUE SC, IMAGE I, SOURCE_EXTRACTOR AS SE WHERE S.CLASS = ‘GALAXY’ AND S.FLUX < 15 AND S.CATALOGUE_ID = SC.ID AND IMAGE.ID = SC.IMAGE_ID AND SC.EXTRACTED_WITH = SOURCE_EXTRACTOR.ID AND SE.IDENTIFIER = ‘SExtractor’

CMU-CS lunch talk, Gerard Lemson26 Probabilistic cross matching

CMU-CS lunch talk, Gerard Lemson27 Computational, statistical and astronomical challenges II Data mining Algorithms for analyzing generic SEDs (classifiers ? visualization ? incorrect identification ?) Source extraction using multiple images, at very different wavelengths, how to take into account different physics/images of same source at different wavelengths ? Cluster finders using multiple catalogues Publish sophisticated statistical analysis algorithms Implementation Efficient implementation virtual telescopes (parallel, distributed, grid based, data structures)