Interrogating hydrocarbon radicals

Slides:



Advertisements
Similar presentations
Preliminary Laboratory Studies of the Photoprocessing of PAH / H 2 O Mixtures in the Interstellar Medium John Thrower Department of Chemistry, School of.
Advertisements

Raman Spectroscopy A) Introduction IR Raman
UV / visible Spectroscopy
Frequency and Time Domain Studies of Toluene Adrian M. Gardner, Alistair M. Green, Julia A. Davies, Katharine L. Reid and Timothy G. Wright.
17.1 Mass Spectrometry Learning Objectives:
The ultraviolet spectroscopy of phenylcyclopentene and phenylcyclopentadiene. Josh J. Newby, Ching-Ping Liu, Christian Müller and Timothy S. Zwier FD02.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
Electronic Spectroscopy of 1-Methylpyrene cation and related species. D. Kokkin, C. Marshall, A. Bonnamy, And C. Joblin and A. Simon.
Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel,
Spectroscopy Spectroscopy: interaction of light with matter Average Bond energies (kJ/mol) C-H: 413C=C: 610H-F: 565 H-H: 436C  C: 835.
Electronic Spectroscopy of long Carbon Chains HC 2n H (n= 8-13) in the Gas Phase Felix Güthe*, Hongbin Ding, Thomas Pino and John P. Maier Institut für.
Diagnosis of a benzene discharge with a mass-selective spectroscopic technique Felix Güthe, Hongbin Ding, Thomas Pino and John P. Maier Institute of Physical.
Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel,
Time out—states and transitions Spectroscopy—transitions between energy states of a molecule excited by absorption or emission of a photon h =  E = E.
VIBRONIC SPECTROSCOPY OF THE PHENYLCYANOMETHYL RADICAL 6/23/11 1 DEEPALI N. MEHTA, NATHANAEL M. KIDWELL, JOSEPH A. KORN, AND TIMOTHY S. ZWIER 66 th International.
Properties of Matter Our goals for learning: What is the structure of matter? What are the phases of matter How is energy stored in atoms?
IR spectroscopy of first-row transition metal clusters and their complexes with simple molecules FELIX facility, Radboud University Nijmegen, the Netherlands.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
APOGEE: The Apache Point Observatory Galactic Evolution Experiment l M. P. Ruffoni 1, J. C. Pickering 1, E. Den Hartog 2, G. Nave 3, J. Lawler 2, C. Allende-Prieto.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
Aloke Das Indian Institute of Science Education and Research, Pune Mimicking trimeric interactions in the aromatic side chains of the proteins: A gas phase.
Laboratory of Molecular Spectroscopy & Nano Materials, Pusan National University, Republic of Korea Spectroscopic Identification of New Aromatic Molecular.
NEUTRAL AND HYDROGENATED CARBON CLUSTERS : WHAT CAN WE LEARN WITH A REMPI EXPERIMENT ? Thomas Pino, Felix Güthe, Hongbin Ding and John P. Maier Institute.
A Study of HCO + and CS in Planetary Nebulae Jessica L. Edwards Lucy M. Ziurys Nick J. Woolf The University of Arizona Departments of Chemistry and Astronomy.
States and transitions
Modeling Linear Molecules as Carriers of the 5797 and 6614 Å Diffuse Interstellar Bands Jane Huang, Takeshi Oka 69 th International Symposium on Molecular.
Integral field spectroscopy of the Red Rectangle: Unraveling the carrier of the RRBs in 2D. Damian Kokkin, Robert Sharp, Masakazu Nakajima, and Timothy.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Higher Electronic Excited States of Jet-Cooled Aromatic Hydrocarbon Radicals: 1-phenylpropargyl (C9H7), 1-naphthylmethyl (C11H9), 2-naphthylmethyl (C11H9)
Jet-Cooled Spectroscopy of 1- Naphthylmethyl, 2-Naphthylmethyl & Acenaphthenyl Radicals Nahid Chalyavi.
Laboratory of Molecular Spectroscopy, Pusan National University, Pusan, Republic of Korea Spectroscopic identification of isomeric trimethylbenzyl radicals.
IDENTIFYING FLUORESCENT HYDROCARBON RADICALS FROM A BENZENE DISCHARGE. Neil J. Reilly, Damian L. Kokkin, Scott H. Kable & Timothy W. Schmidt (Not)
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
Molecular Triplet States: Excitation, Detection, and Dynamics Wilton L. Virgo Kyle L. Bittinger Robert W. Field Collisional Excitation Transfer in the.
Copyright © Professor Sang Kuk Lee, Department of Chemistry, Pusan National University. All rights reserved. 1 The 67 th International Symposium on Molecular.
1 The Red Rectangle Nebula excited by excited species Nadine Wehres, Claire Romanzin, Hans Van Winckel, Harold Linnartz, Xander Tielens.
1.1 What’s electromagnetic radiation
California State University, Monterey Bay CHEM312
Photochemical and Discharge-driven pathways to aromatics from 1,3-butadiene: Exploring aromatic production in Titan’s atmosphere. Josh J. Newby, Jaime.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Tyler P. Troy, Scott H. Kable, Timothy W. Schmidt Department of Chemistry, University of Sydney Scott A. Reid Department of Chemistry, Marquette University.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY The Production of Complex Molecules in Interstellar and Circumstellar Sources.
Belén Maté, Miguel Jiménez-Redondo, Isabel Tanarro, Miguel Moreno, and Victor Herrero Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006,
* Funded by NSF. Xiujuan Zhuang and Timothy C. Steimle* Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ Neil Reilly,
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Lecture 8: Volume Interactions Thursday, 28 January 2010 Ch 1.8 Major spectral features of minerals (p. xiii-xv), from Infrared.
Lecture 3 Mass Spectrometry and Infrared Spectroscopy.
Introduction to Infrared Spectroscopy
CONFORMATION-SPECIFIC ELECTRONIC SPECTROSCOPY OF JET-COOLED 5-PHENYL-1-PENTENE NATHAN R. PILLSBURY, TALITHA M. SELBY, AND TIMOTHY S. ZWIER, Department.
SPECTRA OF JET-COOLED ALL- BENZENOID PAHS - TRIPHENYLENE (C 18 H 12 ) AND HEXA-PERI- HEXABENZOCORONENE(C 42 H 18 ) DAMIAN L. KOKKIN, TYLER P. TROY, NEIL.
Theodore P. Snow Nicholas Betts Meredith Drosback Veronica Bierbaum
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Hydrogenation of PAHs and its effect on the UIR band spectrum
The exotic excited state behavior of 3-phenyl-2-propynenitrile
A Green Bank Telescope Search for ortho-benzyne (o-C6H4) in CRL 618
Mitsunori ARAKI, Hiromichi WAKO, Kei NIWAYAMA and Koichi TSUKIYAMA○
UV-VISIBLE SPECTROSCOPY Dr. R. P. Chavan Head, Department of Chemistry
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Thomas D. Varberg, Department of Chemistry, Macalester College, St
Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by.
from W. Demtröder “Molecular Physics”
Lecture 8: Volume Interactions
Fourier Transform Infrared Spectral
Lecture 8: Volume Interactions
from W. Demtröder “Molecular Physics”
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Presentation transcript:

Interrogating hydrocarbon radicals Timothy Schmidt University of Sydney New South Wales, Australia

Basel, Switzerland. 2001-2003 Maier Group

Where is Basel? Here

More specifically… Basel

The locals…

Interstellar carbon Sun’s carbon abundance : 370 C atoms per 106 H atoms Recommended galactic value : 225±50 C atoms per 106 H atoms In the lines of sight towards many stars, carbon is depleted: d Sco – 26-126 C atoms per 106 H atoms z Oph – 41-141 C per 106 H atoms …available for molecules and dust grains! http://www.ne.jp/asahi/stellar/scenes/object/zeta_oph.jpg (Dude, where’s my carbon)?

Looking for the carbon ISM – Diffuse interstellar bands, DIBs (optical) Dense clouds and nebulae – Unidentified infrared bands, UIRs (3.3 mm, 6.7 mm) Comets – small molecules Red Rectangle – extended red emission and Red Rectangle Bands (optical) 2005 FA13 MOLECULAR EMISSION STRUCTURE IN THE RED RECTANGLE - SEQUENCE BANDS?

Thought to be due to carbonaceous molecules (cations probable) Properties of the DIBs Series of absorption features between about 400 nm and 900 nm (+ a few more) Thought to be due to carbonaceous molecules (cations probable) Carbon chains and polycyclic aromatic hydrocarbons among leading candidates appropriated from Ben McCall (www)

DIBs 10% of light missing at this wavelength Hobbs et al a catalog of diffuse interstellar bands in the spectrum of HD 204827 due to gas phase molecules… what are they? 10

Carbon Chains HC2nH HC2n+1H px py px py Largest identified interstellar molecules are carbon chains. Oscillator strengths can be huge… less material required. 11

Electrical Discharge Source High pressure gas (Ar) Vacuum Pulsed nozzle C16Hn C14Hn C12Hn C17Hn HCCH C15Hn C10Hn C13Hn HCCH C8Hn C11Hn C6Hn C9Hn HV HCCCCCCCCCCCH HCCCCCCCCCCCCCCCH cold molecules in centre of beam

Resonance 2-Colour 2-Photon Ionization (R2C2PI) Detector Source Extraction of ions TOF MS Ionization continuum +e- l2 l1 Chamber in Sydney 13

HC2nH B1Su+ ← X1Sg+ Pino et al., JCP 114, 2208

HC2nH A1Du/Su- ← X1Sg+

HC2nH A1Du/Su- ← X1Sg+ Ding et al., PCCP 5, 4772 (2003)

HC2n+1H A3Su- ← X3Sg-

B ← X transitions carry the oscillator strength LUMO ± SOMO + HOMO

No matches to DIBs for carbon chains Longer chains must be measured HC19H in UV, HC26H in UV HCCCCCCCCCCCCCCCCH HCCCCCCCCCCCCCCCH HCCCCCCCCCCCCCH HCCCCCCCCCCCH HCCCCCCCCCH HCCCCCCCCCCS HCCCCCCCH HCCCCCCCCS HCCCCCCS HCCCCS

C2n+1H3 C-C ☰ C-C ☰ C-H H-C☰C-C ☰ C- C-C ☰ C-H H-C☰C-C ☰ C- | H -C☰C-C ☰ C-H

Some more new molecules CH3CCCCCCCH HCCCCCCCH

Some more new molecules H-C☰C-C ☰ C- CH3 | C -C☰C-C ☰ C-H H-C☰C-C ☰ C- H | C -C☰C-C ☰ C-H

Still no match to DIBs 2004 MJ13 2004 WA03 H-C☰C-C ☰ C- C-C ☰ C-C ☰ C-H H-C☰C-C ☰ C- C-C ☰ C-H CH3CCCCCCCH H-C☰C-C ☰ C- H | C -C☰C-C ☰ C-H HCCCCCCCCCCCCCCCCH H-C☰C-C ☰ C- CH3 | C -C☰C-C ☰ C-H HCCCCCCCCCCCCCCCH HCCCCCCCCCCCCCH HCCCCCCCCCCCH 2004 MJ13 2004 WA03 HCCCCCCCCCH HCCCCCCCCCCS HCCCCCCCH HCCCCCCCCS HCCCCCCS HCCCCS

Sydney, Australia. 2004-2010

Laser spectroscopy supergroup 2009

RRB spectrum - fluorescence Red Rectangle and DIBs DIB spectrum 5799Å RRB spectrum - fluorescence Sarre et al., Science 269 (1995)

The Red Rectangle Aromatic material? The “Unidentified Infrared Bands” - believed due to aromatic material in Interstellar medium. Aromatic material?

Kwok, Nature 430, 895 (2004)

C2 Swan bands in Red Rectangle d3Pg v=2 v=1 v=0 Swan system, Wollaston 1802 v=2 v=1 v=0 a3Pu Rob Sharp AAO

C6H6 discharge High pressure gas (Ar) Vacuum Pulsed nozzle C6H6 C6H6 ? 4429Å DIB HV ? cold molecules in centre of beam Unidentified CRDS laboratory spectrum from Thaddeus/McCarthy lab Jet-cooled CRDS spectrum obtained in Basel Can fluorescence spectroscopy help?

C6H6 discharge – laser induced fluorescence ? C3 ? ? ? ? ? Dr Neil James Reilly (sold to McCarthy)

Benzene discharge Fluorescence of a benzene discharge C2 (normal fluorescence excitation spectrum) Fluorescence of a benzene discharge C2 Not C2 !!

Some electronic states of C2 d3Pg v=2 A1Pu v=1 c3Su+ v=0 v=2 v=2 d-c system Not seen until 2006 v=1 v=1 v=0 v=0 b3Sg- Swan system 1802 Phillips system 1948 v=2 v=1 v=0 Ballik-Ramsay system 1958 v=2 v=2 v=1 v=1 v=0 v=0 a3Pu X1Sg+

c3Su+ state of C2 pg d-c Swan sg pu su sg

d-c system observed!

d-c system observed 2006 RC07; 2007 RD03

Kokkin-Reilly-Morris-Nakajima-Nauta-Kable-Schmidt? Named band systems Kokkin-Reilly-Morris-Nakajima-Nauta-Kable-Schmidt?

Inspiration Kokkin, Reilly, Morris, Nakajima, Nauta, Kable and Schmidt, JCP 231101 (2006)

Back to the C6H6 discharge.. ? ? ? ? C2 ? ? ? ?

Dispersed fluorescence origin DF

? = same molecule! ? ? ? ? ? ? C2 ? ?

2DF spectrum of benzene discharge

2DF spectrum of CH R-R R-P R-Q Q-Q Q-R Q-P C3 P-P P-Q P-R

2DF spectrum of benzene discharge 476 nm

Set detection window over molecule X

Single species spectrum 1000 cm-1 = ring breathe? = aromatic?

Measure the mass… Damian Kokkin Dr Damian Leigh Kokkin (sold to McCarthy) Damian Kokkin

Measure the mass… S0 S1 l l/2 1+1’ REMPI Damian Kokkin

R2C2PI spectrum @ mass 115 mass (X) = 115 X = C9H7 LIF R2C2PI m/z=115

Possible isomers of C9H7 (that are aromatic) 3-phenylpropargyl 1-phenylpropargyl Indenyl radical IP too high Maybe Maybe

Some ground state frequencies (cm-1) Experiment B3LYP/ 6-311G**×0.97 n29 121 120 n28 319 320 n27 422 422 n26 620 609 n25 630 620 n24 674 652 n23 823 810

Resonance-stabilized radicals + CH4 1P1P + •CH3 DH = 60kJ/mol 3PPR I think I mentioned to you that the RSE of 3VP from experiment is ~60kJ/mol, that of 1VP is ~110kJ/mol. + CH4 3P1P + •CH3 DH = 100kJ/mol 1PPR Data from Prof. Leo Radom (USyd)

1PPR not a DIB carrier Hobbs et al a catalog of diffuse interstellar bands in the spectrum of HD 204827 55

1PPR also produced from 1-hexyne… 462nm 471nm this is not noise, it is fluorescence from multiple species LIF with small mono, asterisked peaks were dispersed

2dF… emission excitation LIF with small mono, asterisked peaks were dispersed excitation

dispersed fluorescence of a1 most intense emission feature seen in 2d    trans 1-VP 3-VP sym Mode Exp. (cm⁻¹) Calculated (cm⁻¹) a' 17 169 165 138 16 390 386 322 15 540 523 13 910 900 1010 12 1064 1067 1041 11 1127 1153 1247 10 1265 1261 1278 9 1304 1302 1400 7 1496 1504 1526 6 2024 2044 1985 111 101 71 151 121 61 161 91 131 trans 1-vinylpropargyl 171 1000 2000 3000

two conformers 3463 cm⁻¹ 3634 cm⁻¹ D=168 cm⁻¹ (G3B3 level of theory)

dispersed fluorescence of b1 origin transition of cis 1-vinylpropargyl    cis 1-VP 3-VP sym Mode Exp. (cm⁻¹) Calculated (cm⁻¹) a' 17 155 153 138 16 373 322 15 642 620 523 13 932 914 1010 12 1019 1011 1041 11 1111 1122 1247 10 1217 1223 1278 9 1396 1371 1400 7 1503 1508 1526 6 2032 2058 1985 101 111 171 121 61 161 71 151 131 91 1000 2000 3000

also not DIB carrier Hobbs et al a catalog of diffuse interstellar bands in the spectrum of HD 204827 61

not DIB carrier Hobbs et al a catalog of diffuse interstellar bands in the spectrum of HD 204827 62

Of course, no match to DIBs 2006 WH07 (not) IDENTIFYING FLUORESCENT HYDROCARBON RADICALS FROM A BENZENE DISCHARGE. H-C☰C-C ☰ C- C-C ☰ C-H H-C☰C-C ☰ C- C-C ☰ C-C ☰ C-H CH3CCCCCCCH H-C☰C-C ☰ C- H | C -C☰C-C ☰ C-H HCCCCCCCCCCCCCCCCH H-C☰C-C ☰ C- CH3 | C -C☰C-C ☰ C-H HCCCCCCCCCCCCCCCH HCCCCCCCCCCCCCH HCCCCCCCCCCCH HCCCCCCCCCH HCCCCCCCCCCS HCCCCCCCH HCCCCCCCCS HCCCCCCS HCCCCS

Resonance-Stabilized Hydrocarbon Radicals

Resonance-Stabilized CnHm Radicals ? Indene adds H barrierlessly to afford the 1-indanyl radical

Indanyl radicals 2009 TJ09 Free to a good home in 2011

2010 WG09 - Chalyavi Red rectangle nebula 1-naphthylmethyl

Hexabenzocoronene, C42H18 D6h Symmetry Forbidden Origin B2u  A1g Modes induced by e2g vibrations a and b false origins f = 1.4 x 10-3 Upper limit of 4x1012cm-2 2x10-4 fraction of carbon 69

Benzene-like orbitals LUMOs HOMOs Is the transition B2u – A1g, like benzene? 70

A D3h jewel Jahn-Herzberg-Teller2 ? Jahn-Teller… E” Herzberg-Teller?

(sigh) H-C☰C-C ☰ C- C-C ☰ C-H H-C☰C-C ☰ C- CH3 | C -C☰C-C ☰ C-H CH3CCCCCCCH H-C☰C-C ☰ C- C-C ☰ C-C ☰ C-H H-C☰C-C ☰ C- H | C -C☰C-C ☰ C-H HCCCCCCCCCCCCCCCCH HCCCCCCCCCCCCCCCH HCCCCCCCCCCCCCH HCCCCCCCCCCCH HCCCCCCCCCH HCCCCCCCCCCS HCCCCCCCH HCCCCCCCCS HCCCCCCS HCCCCS

Acknowledgments from Basel. 2001-2003 Prof. John P. Maier Dr Thomas Pino Dr Andrey Boguslavskiy Dr Hongbin Ding

Colleagues Thanks to Coblentz Society Postdoc $ARC funding$ Prof. Scott Kable Dr Klaas Nauta Thanks to Coblentz Society Postdoc Dr Masakazu Nakajima $ARC funding$ PhD Students (Dr) Damian Kokkin (Dr) Neil Reilly Tyler Troy Nahid Chalyavi Hons. Students Chris Morris Jenna Joester Gerry O’Connor Hoi-Ming Chan

Cation spectroscopy – e.g. C4H2+

Spectra of Arn-C4H2+ Spectra are too perturbed for our purposes Have to break covalent bonds… hard! Schmidt et al., J. Molec. Spectrosc.

conformer specific DF Fingerprint region Propargyl/ C=C Stretch Vinyl-wag C=C Stretch C≡C Stretch

(50x greater than benzene) A chemical test… 3-phenylprop-1-yne 1-phenylprop-1-yne About same signal as benzene Huge signal (50x greater than benzene)