C. Johannesson II. Stoichiometry in the Real World (p. 288-294) Stoichiometry – Ch. 9.

Slides:



Advertisements
Similar presentations
II. Stoichiometry in the Real World (p. 379 – 388) Stoichiometry – Ch. 11.
Advertisements

Percent Yield and Limiting Reactants
Mole Review 1.) Calculate the number of moles in 60.4L of O2. 2.) How many moles are there in 63.2g of Cl2? 1 mol O2 60.4L O2 = 2.7 mol O2 22.4L O2 1mol.
Stoichiometry Continued…
II. Stoichiometry in the Real World (p ) Stoichiometry – Ch. 9.
Mole Review 1.) Calculate the number of moles in 60.4L of O2. 2.) How many moles are there in 63.2g of Cl2? 1 mol O2 60.4L O2 = 2.7 mol O2 22.4L O2 1mol.
Limiting Reactants and Percent Yield
II. Stoichiometry in the Real World Limiting Reagents and % yield (p ) Stoichiometry – Ch. 12.
Chapter 9 - Section 3 Suggested Reading: Pages
II. Stoichiometry in the Real World * Limiting Reagents
Unit 08 – Moles and Stoichiometry I. Molar Conversions.
Stoichiometric Calculations (p )
Lecturer: Amal Abu- Mostafa.  Available Ingredients ◦ 4 slices of bread ◦ 1 jar of peanut butter ◦ 1/2 jar of jelly Limiting Reactant Limiting Reactant.
Limiting/Excess Reactants and Percent Yield
II. Gas Stoichiometry. 1 mol of a gas=___ L at STP A. Molar Volume at STP S tandard T emperature & P ressure 0°C and 1 atm.
Chemical Quantities – Ch. 9.
Limiting Reagents and Percent Yield
Stoichiometric Calculations
Unit 8: Percent Yield Calculations
Chapter 12 Stoichiometry The study of the quantitative, or measurable, relationships that exist in chemical formulas and chemical reactions.Stoichiometry.
When copper (II) reacts with silver nitrate, the number of grams of copper required to produce 432 grams of silver is:Warm-Up CuAgNO 3 Ag22+Cu(NO 3 ) 2.
Chapter 12 Cookies? u When baking cookies, a recipe is usually used, telling the exact amount of each ingredient If you need more, you can double or.
Chapter 9 Stoichiometry. Definition of “Stoichiometry”: the mathematics of chemical equations Important Concepts: 1. You MUST have a balanced equation!
Stoichiometric Calculations Stoichiometry – Ch. 9.
Stoichiometric Calculations Start Your Book Problems NOW!! Stoichiometry.
Stoichiometric Calculations Stoichiometry – Ch. 8.
The Study of Stoichiometry I. Stoichiometric Calculations.
I. I.Stoichiometric Calculations Topic 9 Stoichiometry Topic 9 Stoichiometry.
C. Johannesson I. I.Stoichiometric Calculations (p ) Stoichiometry – Ch. 9.
Limiting Reagents & Percent Yield Chapter 9 Notes Part III.
II. Limiting Reactants Stoichiometry – 3.7. A. Limiting Reactants b Available Ingredients 4 slices of bread 1 jar of peanut butter 1/2 jar of jelly b.
II. Stoichiometry in the Real World Stoichiometry – Ch. 11.
II. Stoichiometry in the Real World Stoichiometry – Unit. 10.
II. Stoichiometry in the Real World Stoichiometry.
I. I.Stoichiometric Calculations Topic 6 Stoichiometry Topic 6 Stoichiometry.
C. Johannesson B. Percent Yield calculated on paper measured in lab.
1 Pb(NO 3 ) 2 (aq) + KI (aq)  PbI 2 (s) + KNO 3 (aq) __ 212 Molarity and Stoichiometry M M V V P P mol M L M = mol L mol = M L What volume of 4.0 M KI.
I. I.Stoichiometric Calculations Stoichiometry – Ch. 10.
I. I.Stoichiometric Calculations Stoichiometry. A. Proportional Relationships b I have 5 eggs. How many cookies can I make? 3/4 c. brown sugar 1 tsp vanilla.
Stoichiometry: Limiting Reactants Chapter 9 Lesson 3.
Stoichiometry – Ch What would be produced if two pieces of bread and a slice of salami reacted together? + ?
Stoichiometry in the Real World Stoichiometry – Ch. 11.
II. Stoichiometry in the Real World (p )
Percent Yield in a Chemical Reaction.
Percent Yield actual yield % yield = x 100 theoretical yield
II. Stoichiometry in the Real World
Stoichiometric Calculations
Unit 8: Stoichiometry: Part 1
Stoichiometric Calculations (p )
Ch. 9: Calculations from Chemical Equations
Chapter 12 Review.
Chapter 12 Review.
Agenda: 1/13/2017 Go over the procedure for the Molarity Lab
Limiting and Excess Reactants
Stoichiometry in the Real World
II. Stoichiometry in the Real World (p )
Limiting Reactants + CB + 4 T CT4 plus 16 tires excess 8 car bodies
Formation of Ammonia.
Stoichiometric Calculations (p )
Percent Yield.
II. Stoichiometry in the Real World (p. 368 – 375)
II. Stoichiometry in the Real World (p )
Stoichiometry.
II. Stoichiometry in the Real World
Limiting Reactants + CB + 4 T CT4 plus 16 tires excess 8 car bodies
Limiting Reactants + CB + 4 T CT4 plus 16 tires excess 8 car bodies
Limiting Reactants + CB + 4 T CT4 plus 16 tires excess 8 car bodies
Limiting Reactants and Percent Yield
Limiting/Excess Reactants and Percent Yield
Stoichiometric Calculations (p )
Presentation transcript:

C. Johannesson II. Stoichiometry in the Real World (p ) Stoichiometry – Ch. 9

C. Johannesson A. Limiting Reactants b Available Ingredients 4 slices of bread 1 jar of peanut butter 1/2 jar of jelly b Limiting Reactant bread b Excess Reactants peanut butter and jelly

C. Johannesson A. Limiting Reactants b Limiting Reactant used up in a reaction determines the amount of product b Excess Reactant added to ensure that the other reactant is completely used up cheaper & easier to recycle

C. Johannesson A. Limiting Reactants 1. Write a balanced equation. 2. For each reactant, calculate the amount of product formed. 3. Smaller answer indicates: limiting reactant amount of product

C. Johannesson A. Limiting Reactants b 79.1 g of zinc react with 81g HCl. Identify the limiting and excess reactants. How many grams of hydrogen are formed at STP? Zn + 2HCl  ZnCl 2 + H g ? L 0.90 L 2.5M

C. Johannesson A. Limiting Reactants 79.1 g Zn 1 mol Zn 65 g Zn = 2.4 g H 2 1 mol H 2 1 mol Zn 2g H 2 1 mol H 2 Zn + 2HCl  ZnCl 2 + H g ? g 81.0g

C. Johannesson A. Limiting Reactants 2 g H 2 1 mol H 2 81.O g 1 mol HCl 36g = 2.3 g H 2 1 mol H 2 2 mol HCl Zn + 2HCl  ZnCl 2 + H g ? g 81.0 g

C. Johannesson A. Limiting Reactants Zn: 2.4 g H 2 HCl: 2.3 gH 2 Limiting reactant: HCl Excess reactant: Zn Product Formed: 2.3 g H 2 left over zinc

C. Johannesson B. Percent Yield calculated on paper measured in lab

C. Johannesson B. Percent Yield b When 45.8 g of K 2 CO 3 react with excess HCl, 46.3 g of KCl are formed. Calculate the theoretical and % yields of KCl. K 2 CO 3 + 2HCl  2KCl + H 2 O + CO g? g actual: 46.3 g

C. Johannesson B. Percent Yield 45.8 g K 2 CO 3 1 mol K 2 CO g K 2 CO 3 = 49.4 g KCl 2 mol KCl 1 mol K 2 CO g KCl 1 mol KCl K 2 CO 3 + 2HCl  2KCl + H 2 O + CO g? g actual: 46.3 g Theoretical Yield:

C. Johannesson B. Percent Yield Theoretical Yield = 49.4 g KCl % Yield = 46.3 g 49.4 g  100 = 93.7% K 2 CO 3 + 2HCl  2KCl + H 2 O + CO g49.4 g actual: 46.3 g